ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)級(jí)聯(lián)神經(jīng)網(wǎng)絡(luò)的大豆葉部病害診斷模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31601220,、31371532)、黑龍江省自然科學(xué)基金項(xiàng)目(QC2016031),、“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2014BAD06B01)和黑龍江省農(nóng)墾總局科技項(xiàng)目(HNK125A—08—03)


Diagnosis Model of Soybean Leaf Diseases Based on Improved Cascade Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)大豆葉部病害性狀特征與病種之間的模糊性和不確定性,,將數(shù)字圖像處理技術(shù)與神經(jīng)網(wǎng)絡(luò)智能推理技術(shù)相結(jié)合,,充分挖掘大豆受病害脅迫后表現(xiàn)性狀與病種之間的潛在規(guī)律,,提出了基于改進(jìn)級(jí)聯(lián)神經(jīng)網(wǎng)絡(luò)的大豆病害診斷模型,。首先利用自制載物模板無(wú)損采集大田大豆葉部病害數(shù)字圖像,,計(jì)算病斑區(qū)域的形狀特征,、顏色特征及紋理特征14維度特征參數(shù),;為突顯各方面特征對(duì)于不同病害種類決定作用的差異性,構(gòu)建各子神經(jīng)網(wǎng)絡(luò)并聯(lián)的第1級(jí)網(wǎng)絡(luò),,第2級(jí)網(wǎng)絡(luò)的輸入為第1級(jí)網(wǎng)絡(luò)的輸出,,利用多維特征各自優(yōu)勢(shì)來(lái)自動(dòng)取得病種模式推理規(guī)則,建立了用于大豆葉部病害自動(dòng)診斷的兩級(jí)級(jí)聯(lián)神經(jīng)網(wǎng)絡(luò)模型,,仿真實(shí)驗(yàn)準(zhǔn)確率為97.67%,;同時(shí)應(yīng)用量子遺傳計(jì)算優(yōu)化級(jí)聯(lián)神經(jīng)網(wǎng)絡(luò)參數(shù),平均迭代次數(shù)為743,,平均網(wǎng)絡(luò)誤差為0.000995445,,提高了學(xué)習(xí)效率,實(shí)現(xiàn)了大豆葉部病害的高效自動(dòng)診斷和精確測(cè)報(bào),為大田農(nóng)作物全面系統(tǒng)地開(kāi)展作物病害監(jiān)測(cè),、智能施藥及自動(dòng)防治提供了理論依據(jù),。

    Abstract:

    Crop disease is an important factor to restrict high-yielding, high-quality and high efficiency of products. Soybean is a critical crop, but incidence of soybean diseases increases year by year during their growth, so diagnosis of soybean diseases timely and accurately can provide reliable basis for prevention and control of soybean. Therefore, aiming at the fuzzy and uncertainty between disease traits and diseases of soybean leaf diseases, combining digital image possessing and neural network technology, the diagnosis model of soybean diseases was proposed based on improved cascade neural network after the potential rules of disease traits and diseases was fully mined. Firstly, the diseases images were acquitted by home-made slide template, the 14 dimensional characteristic parameters were calculated based on the geometry characteristic, color characteristic and texture characteristic of disease areas. Secondly, in order to highlight all aspects of characteristics for different kinds of diseases, the first level of each parallel neural network was constructed, the output of the first level was the input of the second level. Thirdly, the two slopes cascade neural network model was established for diagnosis soybean leaf diseases automatically, which based on inference rules of diseases using respective advantages of multidimensional characteristics, the simulation accuracy was 97.67%. Meanwhile, the cascade neural network parameters were optimized by quantum genetic algorithm. The average number of iterations was 743, and the average network error was 0.000995445. The proposed method realized the automatic diagnosis and precise forwards, which also provided important theory basis for disease monitoring and smart pesticide spraying.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馬曉丹,關(guān)海鷗,祁廣云,劉剛,譚峰.基于改進(jìn)級(jí)聯(lián)神經(jīng)網(wǎng)絡(luò)的大豆葉部病害診斷模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(1):163-168. MA Xiaodan, GUAN Haiou, QI Guangyun, LIU Gang, TAN Feng. Diagnosis Model of Soybean Leaf Diseases Based on Improved Cascade Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(1):163-168.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-02-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-01-10
  • 出版日期:
文章二維碼