ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于分層聚類(lèi)和拓?fù)溥B接模型的點(diǎn)云自適應(yīng)簡(jiǎn)化
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51205015)和國(guó)家留學(xué)基金項(xiàng)目(201406025039)


Adaptive Simplification for Point Cloud Based on Hierarchical Clustering and Topological Connectivity Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    激光掃描測(cè)量在大尺寸海量點(diǎn)云數(shù)據(jù)采集中具有顯著的優(yōu)勢(shì),,針對(duì)海量高密度線(xiàn)掃描點(diǎn)云采樣中普遍存在的采樣效率低,、曲率適應(yīng)性差的問(wèn)題,,在初始分層聚類(lèi)建立K鄰域的基礎(chǔ)上,,通過(guò)分析線(xiàn)狀點(diǎn)云的空間幾何特征,,提出了線(xiàn)掃描點(diǎn)云矢量邊對(duì)衍生算法,,建立了拓?fù)溥B接模型;研究了基于線(xiàn)掃描點(diǎn)云特征參數(shù)的局部法矢加權(quán)系數(shù)計(jì)算方法,,估算了拓?fù)浣Y(jié)構(gòu)中任意數(shù)據(jù)內(nèi)點(diǎn)的局部法矢;構(gòu)建了以法矢方差為細(xì)分準(zhǔn)則的非均勻細(xì)分模型,,實(shí)現(xiàn)了對(duì)高曲率初始類(lèi)的非均勻細(xì)分,。通過(guò)試驗(yàn)驗(yàn)證了算法的實(shí)用性。

    Abstract:

    Laser-scanning measurement, which has become a prevalent and challenging research topic, has a significant advantage in massive and large-scale data sets acquisition. For the problems that universally exist in massive and high density point cloud sampling, such as low efficiency and bad adaptive curvature, the spatial geometry character of linear point cloud structure is investigated to produce an edge-pair derivative algorithm for line scanning point cloud. On this basis, topological connectivity model is established. To generate dense points in high-curvature areas and sparse points in planar regions efficiently, the local normal-vector variation is substituted for Gaussian curvature to determine the degree of recursive subdivision. Meanwhile, the computational method for the non-equal weighted factor of local normal-vector is presented to estimate the local normal-vector of any point in topological structure. For further subdivision, non-uniform subdivision model whose subdivision criterion is normal variance is built to achieve the subdivision for dense points in high-curvature areas. A relevant simplification system based on the algorithm is developed by using Visual Studio. Many cases are implemented to demonstrate the performance and validate the effectiveness of the method. The comparison with other point-based methods is also performed to illustrate the superiority of the method.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

周煜,劉勐,馬正東,杜發(fā)榮,丁水汀,閔敏.基于分層聚類(lèi)和拓?fù)溥B接模型的點(diǎn)云自適應(yīng)簡(jiǎn)化[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(12):416-423. Zhou Yu, Liu Meng, Ma Zhengdong, Du Farong, Ding Shuiting, Min Min. Adaptive Simplification for Point Cloud Based on Hierarchical Clustering and Topological Connectivity Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(12):416-423.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-05-25
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2016-12-10
  • 出版日期:
文章二維碼