ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于常規(guī)氣象資料估算南方地區(qū)日輻射總量方法比較
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)項(xiàng)目(2011AA100504),、國(guó)家自然科學(xué)基金項(xiàng)目(51509208)和江西省教育廳科學(xué)技術(shù)研究項(xiàng)目(GJJ151123)


Comparison of Total Radiation Estimation Methods in South Area Based on Conventional Meteorological Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    日地表總輻射量(Rs)是作物生長(zhǎng)模型和參考作物蒸發(fā)蒸騰量估算的重要基礎(chǔ)數(shù)據(jù),但我國(guó)只有約1/20的氣象站能夠直接觀測(cè)Rs,。由于氣溫資料很容易獲得,,使用基于基本氣象資料的經(jīng)驗(yàn)?zāi)P褪枪浪鉘s的常用方法,。以1982—2014年南方20個(gè)氣象站的氣象資料為基礎(chǔ),對(duì)Bristow—Campbell (B—C)方法和Hargreaves(Harg)方法各6種不同形式重新進(jìn)行了參數(shù)率定,,并對(duì)以上方法和支持向量機(jī)15種參數(shù)輸入形式進(jìn)行了適用性評(píng)價(jià),,結(jié)果表明:支持向量機(jī)模型整體好于B—C方法和Harg方法。其中,,以最高溫度(Tmax),、最低溫度(Tmin)、相對(duì)濕度(RH)和降水量(P)為輸入變量的支持向量機(jī)模型精度最高,,其20站平均R2達(dá)到0.80,、RMSE平均為3.20MJ/(m2·d),且在包含降雨量資料后,,不存在Rs為負(fù)或大于地外總輻射量(Ra)的問題,。僅有溫度資料時(shí),支持向量機(jī)模型的20站平均R2為0.74,,RMSE為3.72MJ/(m2·d),。不同輸入變量對(duì)支持向量機(jī)模型預(yù)報(bào)Rs的精度影響不同,,輸入變量為Tmax和Tmin優(yōu)于輸入變量為ΔT,;而除溫度資料外,當(dāng)擁有相對(duì)濕度和降水量資料時(shí),,模型優(yōu)劣依次表現(xiàn)為RH+P,、RH、P,。經(jīng)驗(yàn)?zāi)P椭蠦—C方法的M1和M3以及Harg方法的M10和M12模型精度較好,,其R2為0.69~0.70、RMSE在4.00MJ/(m2·d)左右,,但M10和M12模型對(duì)氣象資料要求更高,,除日溫度差外,需要降水量資料,,同時(shí)還存在有降水時(shí)日Rs嚴(yán)重高估或負(fù)值問題,。

    Abstract:

    Global solar radiation (Rs) is an important elementary datum for crop modeling and reference evapotranspiration (ETo) estimation, but only 1/20 of Chinese weather stations can observe it directly. It is a common method for estimating Rs to use empirical model based on temperature data, which are easy to get. Based on the temperatures of 20 weather stations in south of China from 1982 to 2014, parameters of six different forms of Bristow—Campbell (B—C) and Hargreaves (Harg) methods were calibrated, and the applicability of abovementioned methods and fifteen support vector machine (SVM) parameter input forms were evaluated. The results showed that SVM model was better than B—C method and Harg method as a whole. The SVM model with maximum temperature (Tmax), minimum temperature (Tmin), relative humidity (RH) and precipitation (P) as input variables had the highest precision. On average, R2 and RMSE from the twenty weather stations were 0.80 and 3.20MJ/(m2·d), respectively, even when it included precipitation data, Rs was not negative and even greater than the extraterrestrial total radiation (Ra). R2 from the twenty weather stations was 0.74 on average, and RMSE was 3.72MJ/(m2·d) when based on temperature data. Different input variables had different influences on the SVM model forecasted Rs, the input variables of Tmax and Tmin were superior to ΔT. In addition to temperature data, when the model had the relative humidity and rainfall data, it was showed that RH+P > RH > P. Among the empirical models, the B—C model’s M1 and M3, and the Harg models’ M10 and M12 were preferable, their R2 were 0.69~0.70, RMSE was about 4.0MJ/(m2·d). While the M10 and M12 had higher request to the meteorological data, which needed the data of dayly temperature and precipitation. There existed the dayly Rs overestimation or negative problems when it rained.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

向友珍,吳立峰,張富倉(cāng),范軍亮,魯向暉,王莢文.基于常規(guī)氣象資料估算南方地區(qū)日輻射總量方法比較[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(10):181-192,155. Xiang Youzhen, Wu Lifeng, Zhang Fucang, Fan Junliang, Lu Xianghui, Wang Jiawen. Comparison of Total Radiation Estimation Methods in South Area Based on Conventional Meteorological Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(10):181-192,155.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-05-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-10-10
  • 出版日期:
文章二維碼