ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于PSO-LSSVM的森林地上生物量估測(cè)模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(41371001)、北京市科技專(zhuān)項(xiàng)項(xiàng)目(Z15110000161596),、北京林業(yè)大學(xué)青年教師科學(xué)研究中長(zhǎng)期項(xiàng)目(2015ZCQ-LX-01)和平頂山學(xué)院青年科研基金項(xiàng)目(PDSU-QNJJ-2013007)


Estimation Model of Forest Above-ground Biomass Based on PSO-LSSVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提高森林地上生物量估測(cè)精度,,從建模因子和建模方法出發(fā),,提出了一種綜合考慮影像紋理特征,、地形特征,、光譜特征的粒子群優(yōu)化最小二乘支持向量機(jī)生物量估測(cè)方法,。以松山自然保護(hù)區(qū)為研究區(qū)域,,以資源三號(hào)遙感衛(wèi)星數(shù)據(jù)為數(shù)據(jù)源,配合194塊調(diào)查樣地實(shí)測(cè)數(shù)據(jù),、森林資源二類(lèi)調(diào)查數(shù)據(jù),、數(shù)字高程模型數(shù)據(jù),通過(guò)分析46個(gè)特征變量與森林地上生物量間的Pearson相關(guān)性,,進(jìn)行特征變量?jī)?yōu)化提取,,建立PSO-LSSVM模型并在Matlab 2014a上編程實(shí)現(xiàn)。以決定系數(shù)R 和均方根誤差RMSE為指標(biāo),,對(duì)比分析了PSO-LSSVM和多元線性回歸地上生物量模型精度,。研究結(jié)果表明:PSO-LSSVM模型在針葉林、闊葉林,、灌木林3種類(lèi)型中預(yù)測(cè)決定系數(shù)分別為0.867,、0.853、0.842,,比多元線性回歸模型分別提高了23.15%,、19.13%、14.40%。PSO-LSSVM地上生物量模型具有良好的自學(xué)能力和自適應(yīng)能力,,它取代了傳統(tǒng)的遍歷優(yōu)化方法,,在全局優(yōu)化及收斂速度方面具有較大優(yōu)勢(shì),預(yù)測(cè)精度較高,。

    Abstract:

    In order to improve the accuracy of forest above-ground biomass estimation,, constructed from modeling factor selection and modeling aspects, a PSO-LSSVM biomass estimation method was proposed by considering comprehensive of the image texture features, topographical features, spectral features. Selecting Songshan Nature Reserve as study area, with the data sources from ZY-3 satellite remote sensing image, the measured data of 194 survey plots, forest resource inventory data, and the digital elevation model data, the Pearson correlation relationship was analyzed between 46 feature variables and forest above-ground biomass. With the optimal feature extraction variables chosen, the PSO-LSSVM model was established in Matlab 2014a. The determination coefficient (R) and root mean square error (RMSE) were taken for comparative analysis of the accuracy of PSO-LSSVM model and multiple linear regression model. The results showed that the prediction accuracies (R) of PSO-LSSVM model in coniferous forest, broadleaf forest and shrub were 0.867, 0.853 and 0.842, which were improved by 23.15%, 19.13% and 14.40% compared with the multiple linear regression model, respectively. The PSO-LSSVM model had self-study ability and adaptive capability, it can replace the traditional traversal optimization method, and it had great advantages on global optimization and convergence rate with small sample volume requirement and high precision accuracy.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊柳,孫金華,馮仲科,岳德鵬,楊立巖.基于PSO-LSSVM的森林地上生物量估測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(8):273-279,287. Yang Liu, Sun Jinhua, Feng Zhongke, Yue Depeng, Yang Liyan. Estimation Model of Forest Above-ground Biomass Based on PSO-LSSVM[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(8):273-279,287.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-03-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-08-10
  • 出版日期: 2016-08-10
文章二維碼