ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于偏度聚類的哺乳期母豬聲音特征提取與分類識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

黑龍江省青年科學(xué)基金項(xiàng)目(QC2014C078、QC2013C031),、黑龍江省教育廳科研項(xiàng)目(12541493)和大慶市指導(dǎo)性科技計(jì)劃項(xiàng)目(szdfy-2015-23)


Feature Extraction and Classification Based on Skewness Clustering Algorithm for Lactating Sow
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    哺乳期是母豬繁育仔豬的關(guān)鍵時期,,哺乳母豬特有的發(fā)聲是其生理、情緒健康及其對仔豬看護(hù)的母性能力的最直接表達(dá),。哺乳期間母豬所發(fā)聲音種類眾多,,增加了快速定位及準(zhǔn)確識別特定聲音類型的復(fù)雜度,,以小梅山母豬的哺乳聲、飲水聲,、采食聲及無食咀嚼聲等常見聲音為研究對象,,以功率比作為特征向量,對頻域進(jìn)行更精細(xì)的能量計(jì)算,,提出基于偏度的子帶聚類法合并特征不顯著的子帶,,減少特征向量數(shù)量,構(gòu)建支持向量機(jī)(SVM)的聲音分類識別器,,統(tǒng)計(jì)各類聲音的發(fā)聲時長,;進(jìn)一步以單個哺乳周期為對象,建立成功哺乳的聲音模式,。試驗(yàn)結(jié)果表明,,哺乳聲、無食咀嚼聲,、采食聲和飲水聲的最大功率比分別位于[0Hz,1000Hz],、[1000Hz,1500Hz]、[1500Hz,2500Hz]和[2500Hz,8000Hz\]子帶內(nèi),,以4個子帶的功率比為特征的聲音判別模型的識別率分別為100%,、100%、95.17%,、96.61%,,與等間隔子帶劃分及主成分分析法比較,減少了特征向量的數(shù)量,,且顯著提高了識別算法的精度,,進(jìn)一步應(yīng)用在母豬分娩舍內(nèi),實(shí)現(xiàn)了對哺乳母豬的母性能力及其健康狀況的無應(yīng)激,、實(shí)時監(jiān)測,。

    Abstract:

    The lactation period is a critical period for sows to breed their piglets, and the specific voice of lactating sows in this period is the most direct expression of their physiology, emotional health, and maternal ability to care for piglets. The rapid location and accurate identification will be more complex due to a variety of vocalizations during this period. Therefore, the vocalizations of nursing grunt, drinking, feeding and sham chewing were observed, and a fine energy calculation for frequency domain with a power ratio as a vector was carried out. Then, the subband clustering method based on skewness was presented to merge the sub bands without significant characteristics to reduce the number of parameters. Thirdly, the recognizer for sow’s vocalizations was built based on support vector machine(SVM) to calculate the duration of the different types of vocalization. A sound mode of successful nursing was established further within single lactation circle. It is shown that the max power ratio frequency domain of the nursing grunt, the sham chawing, the feeding and the drinking are ranged from 0Hz to 1000Hz, 1000Hz to 1500Hz, 1500Hz to 2500Hz, and 2500Hz to 8000Hz, respectively. The accuracy of the vocalization recognition mode with these four sub bands power ratio frequency as parameters were 100%, 100%, 95.17% and 96.61%, respectively. Compared with the uniformlyspaced subband division and principal component analysis (PCA), the number of features was reduced, and the recognition accuracy was significantly improved in the clustering algorithm based on skewness. Thus, the proposed method could be further applied in the health and maternal ability of sows monitoring realtimely and nonstressly.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

閆麗,邵慶,吳曉梅,謝秋菊,孫昕,韋春波.基于偏度聚類的哺乳期母豬聲音特征提取與分類識別[J].農(nóng)業(yè)機(jī)械學(xué)報,2016,47(5):300-306. Yan Li, Shao Qing, Wu Xiaomei, Xie Qiuju, Sun Xin, Wei Chunbo. Feature Extraction and Classification Based on Skewness Clustering Algorithm for Lactating Sow[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(5):300-306.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-10-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-05-10
  • 出版日期: 2016-05-10
文章二維碼