ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于反向?qū)W習(xí)模型的多目標(biāo)進(jìn)化算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51475142)


Multi-objective Evolutionary Algorithm Based on Opposition-based Learning Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)復(fù)雜多目標(biāo)優(yōu)化問(wèn)題,提出一種基于分解機(jī)制和反向?qū)W習(xí)模型的多目標(biāo)進(jìn)化算法,。該算法在基于分解機(jī)制的多目標(biāo)進(jìn)行算法的框架下,,引入反向?qū)W習(xí)模型,該模型具有較好的局部尋優(yōu)能力,。在種群進(jìn)化的過(guò)程中,,反向?qū)W習(xí)模型和差分進(jìn)化機(jī)制自適應(yīng)的相互配合,能夠較好地平衡算法的全局搜索與局部尋優(yōu)能力,。采用國(guó)際公認(rèn)的具有復(fù)雜Pareto Set的LZ09系列測(cè)試問(wèn)題進(jìn)行實(shí)驗(yàn)驗(yàn)證,,并與MOEA/D—DE、GDE3,、NSGA—II和SPEA2等方法比較,,實(shí)驗(yàn)結(jié)果表明,所提方法能夠獲得收斂性、分布性及延展性較好的Pareto最優(yōu)解集,。為了研究算法在求解約束問(wèn)題的性能,,將其應(yīng)用于減速器多目標(biāo)優(yōu)化設(shè)計(jì)問(wèn)題中,結(jié)果表明了該算法獲得Pareto前端較均勻,,說(shuō)明其算法具有求解約束問(wèn)題的能力和工程有效性,。

    Abstract:

    A multi-objective evolutionary algorithm cooperated with decomposition mechanism and opposition-based learning model was proposed for solving complex multi-objective optimization problems. Under the framework of multi-objective evolutionary algorithm based on decomposition, the opposition-based learning model was introduced into the algorithm. The model improved the algorithm’s exploitation. During the evolution process, the opposition-based learning model facilitated the local optimization and the differential evolution strategy enhanced the global research for the new algorithm. The opposition-based learning strategy and differential evolution were in coordination to balance its exploration and exploitation. The benchmark LZ09 series of internationally recognized with complicated Pareto sets were adopted to verify its effectiveness. The proposed multi-objective evolutionary algorithm based on opposition-based learning model was compared with MOEA/D based on DE (MOEA/D—DE), the third evolution step of generalized differential evolution (GDE3), fast and elitist multi-objective genetic algorithm (NSGA—II) and improving strength Pareto evolutionary algorithm (SPEA2), the results showed that the proposed algorithm can obtain Pareto fronts with good convergence, diversity and wild coverage. In order to analyze the algorithm to solve the problem of performance constraints, the proposed algorithm was applied to solve the multi-objective optimization design of speed reducer. The results showed that the Pareto front obtained by the algorithm was uniform, which demonstrated its good performance in solving practical problem with constraints and engineering effectiveness.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王亞輝,吳金妹,賈晨輝.基于反向?qū)W習(xí)模型的多目標(biāo)進(jìn)化算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(4):326-332,342. Wang Yahui, Wu Jinmei, Jia Chenhui. Multi-objective Evolutionary Algorithm Based on Opposition-based Learning Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(4):326-332,342.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-12-03
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2016-04-10
  • 出版日期: 2016-04-10
文章二維碼