ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于WSN的溫室CO 2 氣肥優(yōu)化調(diào)控系統(tǒng)研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(31271619),、高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金資助項(xiàng)目(20110008130006)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(2015XD004)


Design of CO 2 Fertilizer Optimizing Control System on WSN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    CO 2是植物進(jìn)行光合作用的重要原料,合理增施可提高作物的光合速率,。為實(shí)現(xiàn)溫室CO 2氣肥的精細(xì)管理,,設(shè)計(jì)了基于無線傳感器網(wǎng)絡(luò)(WSN)的溫室CO 2氣肥調(diào)控系統(tǒng)。該系統(tǒng)由監(jiān)控節(jié)點(diǎn),、智能網(wǎng)關(guān)和遠(yuǎn)程管理軟件組成,,其中監(jiān)控節(jié)點(diǎn)能夠自動(dòng)實(shí)時(shí)監(jiān)測(cè)溫室環(huán)境信息(CO 2濃度、光照強(qiáng)度,、空氣溫濕度和土壤溫濕度),,并控制CO 2增施氣閥的開關(guān);智能網(wǎng)關(guān)不僅能實(shí)現(xiàn)監(jiān)控節(jié)點(diǎn)與遠(yuǎn)程管理軟件之間的通信,,還可在本地實(shí)現(xiàn)對(duì)溫室環(huán)境信息的顯示與存儲(chǔ),,以及CO 2增施調(diào)控等操作;遠(yuǎn)程管理軟件除了具備基本的數(shù)據(jù)接收,、存儲(chǔ)和查詢功能外,,還可通過建立的光合速率預(yù)測(cè)模型對(duì)CO 2氣肥實(shí)現(xiàn)遠(yuǎn)程自動(dòng)調(diào)控。本文以番茄為研究對(duì)象,,采用開發(fā)的系統(tǒng)實(shí)時(shí)獲取環(huán)境信息,,使用LI-6400XT光合速率儀獲取單葉凈光合速率,建立了基于支持向量機(jī)(SVM)的番茄光合速率預(yù)測(cè)模型,。為了提高預(yù)測(cè)模型的通用性,,實(shí)驗(yàn)將苗后期番茄在4個(gè)CO 2濃度梯度進(jìn)行培育,其中C1,、C2,、C3分別進(jìn)行700、 1 000 ,、1 300 μmol/mol濃度的CO 2增施,,CK為對(duì)照組(CO 2濃度約為450 μmol/mol)。數(shù)據(jù)分析采用SVM算法,,以多種環(huán)境信息作為輸入變量,,以單葉凈光合速率作為輸出變量,得到光合速率預(yù)測(cè)模型,。經(jīng)過測(cè)試與驗(yàn)證,,CO 2濃度調(diào)控系統(tǒng)能夠穩(wěn)定可靠地采集溫室環(huán)境信息,,適合應(yīng)用在溫室環(huán)境中;光合速率模型預(yù)測(cè)值和實(shí)測(cè)值相關(guān)系數(shù)為0.981 5,,均方根誤差為1.092 5 μmol/(m 2 ·s),,具有較好的預(yù)測(cè)效果,為溫室番茄CO 2定量增施調(diào)控提供了依據(jù),。

    Abstract:

    Abstract: Carbon dioxide (CO 2) is an important raw material of the plant photosynthesis. Increasing CO 2 fertilizer rationally can improve the net photosynthetic rate of plant leaf, and further improve crop yield and quality. To achieve precision management of CO 2 fertilizer in greenhouse, a greenhouse CO 2 fertilizer optimizing control system based on wireless sensor network (WSN) was designed and developed. The whole system includes four monitoring and controlling nodes, an intelligent gateway and a remote management software. The monitoring and controlling node, which connected to sensors and an electromagnet, can real time monitor greenhouse environmental parameters and control the switch of CO 2 source according to the demand of crop. The intelligent gateway can process and transmit the data and commands between nodes and remote management software. It can also storage and display environment parameters locally. Besides, user can control the CO 2 source by gateway. The remote management software, which embeds photosynthetic rate prediction model, can not only process and transmit the data, but also control CO 2 fertilizer remotely. To achieve precision management of CO 2 fertilizer supplement, it was necessary to build an accurate and reliable net photosynthetic rate prediction model. The paper measured environment parameters by the system above mentioned, and obtained single-leaf net photosynthetic rate by LI-6400XT photosynthesis analyzer. Then a photosynthetic rate prediction model based on SVM was established. In order to improve the generality of prediction model, tomatoes in late seedling stage were cultivated in four different fertilizer levels ((700±50)μmol/mol (C1), (1 000±50)μmol/mol (C2), (1 300±50)μmol/mol (C3), ambient about 450 μmol/mol (CK)). The photosynthetic rate prediction model was established by support vector machine (SVM). The environment parameters were used as input variables, and the photosynthetic rate was taken as output variable. The performances of designed system and prediction model were evaluated. The system can work stably and reliably, therefore it can be used to monitor environment information and control the CO 2 fertilizer in solar greenhouse. The prediction results of the model showed that R between predicted and measured data was 0.981 5 and RMSE was 1.092 5 μmol/(m 2 ·s). According to the analysis, it was concluded that the prediction model can be good used as the basis of the quantitative regulation of CO 2 fertilization to tomato plants in greenhouse.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

季宇寒,李婷,張漫,沙莎.基于WSN的溫室CO 2 氣肥優(yōu)化調(diào)控系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(S1):201-207. Ji Yuhan, Li Ting, Zhang Man, Sha Sha. Design of CO 2 Fertilizer Optimizing Control System on WSN[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(S1):201-207.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-10-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-12-30
  • 出版日期: 2015-12-31
文章二維碼