ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于支持向量機(jī)的中文農(nóng)業(yè)文本分類技術(shù)研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2013AA102306)、山東省自主創(chuàng)新資助項(xiàng)目(2014XGA13054)和中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(2015XD001)


Classification Technique of Chinese Agricultural Text Information Based on SVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    高效地組織,、分類信息,,是提供個(gè)性化農(nóng)業(yè)信息推薦服務(wù)的基礎(chǔ),。根據(jù)農(nóng)業(yè)文本信息特點(diǎn),,提出了一種基于線性支持向量機(jī)(Support vector machine,SVM)的中文農(nóng)業(yè)文本分類模型,,首先構(gòu)建農(nóng)業(yè)行業(yè)分類關(guān)鍵詞庫,,通過特征詞選擇和權(quán)重計(jì)算,構(gòu)建分類器模型,,實(shí)現(xiàn)信息的自動(dòng)分類,。實(shí)驗(yàn)選取了1 071個(gè)測(cè)試文檔,并按照種植業(yè),、林業(yè),、畜牧業(yè)、漁業(yè)進(jìn)行分類,。結(jié)果表明,,分類準(zhǔn)確率為96.5%,召回率為96.4%,。實(shí)驗(yàn)結(jié)果高于貝葉斯,、決策樹、KNN,、SMO等分類算法,,將該模型應(yīng)用于農(nóng)業(yè)物聯(lián)網(wǎng)行業(yè)信息綜合服務(wù)平臺(tái),運(yùn)行結(jié)果表明,,該方法能夠?qū)崿F(xiàn)中文農(nóng)業(yè)文本信息的自動(dòng)分類,,響應(yīng)時(shí)間滿足系統(tǒng)要求。

    Abstract:

    In order to provide personalized services for agricultural information recommendation, it was needed to organize and classify information efficiently. According to the characteristics of agricultural texts, a Chinese agricultural text classification model was proposed based on linear support vector machine (SVM). Firstly, an agriculture-domain-based dictionary was built. Secondly, a feature vector was extracted and the weight for each feature in a vector was selected. Lastly, a text classification model was established. The model was tested on 1 071 documents which were belonged to four classes: planting, forestry, animal husbandry and fisheries. The results showed that the accuracy was 96.5% and the recall rate was 96.4%. Both of their performances were higher than those of the ones using other classification methods, such as the Bayesian, decision tree, KNN, SMO algorithm and neural network. The model was applied to the platform for agricultural internet of things (IOT) industry integrated information service. The performance showed that the method can automatically classify Chinese agricultural text information and the response time met the system requirements.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

魏芳芳,段青玲,肖曉琰,張磊.基于支持向量機(jī)的中文農(nóng)業(yè)文本分類技術(shù)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(S1):174-179. Wei Fangfang, Duan Qingling, Xiao Xiaoyan, Zhang Lei. Classification Technique of Chinese Agricultural Text Information Based on SVM[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(S1):174-179.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-10-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-12-30
  • 出版日期: 2015-12-31
文章二維碼