ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)K-means算法的WSN簇頭節(jié)點(diǎn)數(shù)據(jù)融合
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(31371531)


Fusion of WSN Cluster Head Data Based on Improved K-means Clustering Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合能夠減少節(jié)點(diǎn)能耗,、延長網(wǎng)絡(luò)生命周期,,近年來受到了廣泛關(guān)注,。已有的應(yīng)用于農(nóng)業(yè)監(jiān)測的空間數(shù)據(jù)融合算法多采用取平均值等方法將一定區(qū)域內(nèi)監(jiān)測到的數(shù)據(jù)融合成一個(gè)值,。而農(nóng)田環(huán)境監(jiān)測具有監(jiān)測范圍廣、監(jiān)測點(diǎn)多,、監(jiān)測數(shù)據(jù)量大的特點(diǎn),,監(jiān)測數(shù)據(jù)間除了冗余性還具有差異性,因此數(shù)據(jù)融合應(yīng)該在消除冗余的同時(shí)保留數(shù)據(jù)的差異,。針對農(nóng)業(yè)監(jiān)測的這一特點(diǎn),,提出在簇頭節(jié)點(diǎn)應(yīng)用聚類算法進(jìn)行空間數(shù)據(jù)融合,通過聚類減少數(shù)據(jù)發(fā)送量,,降低能耗,;同時(shí)將差異較大的參量聚類到不同類別中以保留數(shù)據(jù)間的差異,。此外,還提出了一種應(yīng)用于WSN簇頭節(jié)點(diǎn)的自適應(yīng)改進(jìn)K-means聚類算法,,仿真結(jié)果表明,,所提算法融合后的數(shù)據(jù)上傳量比沒有融合減少41.19%,消除了數(shù)據(jù)冗余,;算法融合前后最大誤差低于取平均值法誤差的36%,,保留了數(shù)據(jù)差異性。在沒有明確誤差要求時(shí), 該算法能夠在盡量減少數(shù)據(jù)上傳量的同時(shí)保持相對誤差低于10%,,避免了因聚類個(gè)數(shù)不當(dāng)引起的巨大誤差,。而在有具體誤差要求時(shí),該算法融合前后的絕對誤差嚴(yán)格低于要求誤差,。

    Abstract:

    Data fusion for wireless sensor networks (WSN) can reduce the energy consumption of sensor nodes and prolong the network lifetime, so that it has attracted wide spread attention in a variety of applications. The existing algorithms for spatial data fusion that have been used in agricultural monitoring always aggregate the data within a certain area into one value by means of averaging. However, in addition to redundancy resulted from correlation, the sensed data also has variance due to larger monitoring area, more monitoring nodes and larger amount of data in farmland environment. Hence, data fusion in farmland monitoring should retain the differences of data while eliminating the redundancy. The idea that applying data fusion algorithm on WSN cluster head to aggregate spatially correlated data by clustering was proposed. While the parameters whose values are quite different will be clustered into different categories so that differences between the data can be reserved. An improved adaptive K-means clustering algorithm was proposed to be used in cluster head. Simulation results indicate that, the amount of data uploaded with fusion algorithm was decreased by 41.19% compared with that without fusion algorithm,and the maximum error before and after the proposed fusion algorithm is less than 36% of that before and after the averaging fusion method.When there is no clear accuracy requirement,the proposed algorithm can reduce the amount of data uploaded and maintain the relative error less than 10%, 〖JP3〗avoiding enormous error caused by improper number of clusters.When there are specific accuracy requirements, the relative error produced by the proposed algorithm can meet the error requirements strictly.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

高紅菊,劉艷哲,陳莎.基于改進(jìn)K-means算法的WSN簇頭節(jié)點(diǎn)數(shù)據(jù)融合[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(S1):162-167. Gao Hongju, Liu Yanzhe, Chen Sha. Fusion of WSN Cluster Head Data Based on Improved K-means Clustering Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(S1):162-167.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-10-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-12-30
  • 出版日期: 2015-12-31
文章二維碼