ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多參數(shù)融合的土壤硝態(tài)氮檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(61134011,、31201136)和中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(2015XD001)


Prediction of Soil Nitrate-nitrogen Based on Sensor Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對土壤懸液組分復(fù)雜以及單輸入變量時(shí)電極預(yù)測精準(zhǔn)度有限的問題,,以提高離子選擇電極預(yù)測土壤硝態(tài)氮含量精準(zhǔn)度為目標(biāo),,建立基于多參數(shù)融合的支持向量機(jī)(SVM)土壤硝態(tài)氮預(yù)測模型,。采用灰色關(guān)聯(lián)分析法對影響電極法測定土壤硝態(tài)氮的主要干擾因素進(jìn)行排序,建立以主干擾因素及硝酸根電極檢測電勢的多參數(shù)融合SVM預(yù)測模型,,并與傳統(tǒng)Nernst模型和干擾因素全輸入下的SVM模型作對比驗(yàn)證算法可行性,。實(shí)驗(yàn)結(jié)果表明,,土壤電導(dǎo)率、溫度與Cl -電極檢測電勢為影響電極預(yù)測硝態(tài)氮精準(zhǔn)度的主要干擾因素,;輸入?yún)?shù)為硝態(tài)氮電極檢測電勢,、土壤電導(dǎo)率、溫度與Cl -電極檢測電勢時(shí),,SVM土壤硝態(tài)氮預(yù)測模型效果最優(yōu),,與光學(xué)法測定結(jié)果回歸方程的調(diào)整決定系數(shù)為0.98,平均絕對偏差為3.38 mg/L,,均方根誤差為4.51 mg/L,,基于多參數(shù)融合的SVM預(yù)測模型可顯著提高電極法硝態(tài)氮檢測精準(zhǔn)度。

    Abstract:

    The conventional method of soil nitrate-nitrogen prediction based on ion-selective electrode had the problem of complex soil suspension components and the limited prediction accuracy and precision in single input variables. To improve the prediction accuracy and precision of soil NO - 3-N concentration employing ion-selective electrodes (ISEs), the support vector machine (SVM) model of soil NO - 3-N prediction based on sensor fusion was built. Grey relational analysis was applied to screen the major interference factors, which had a great impact on the soil NO - 3-N detection employing ISEs, and the support vector machine (SVM) model based on sensor fusion was built with the major factors. Then, the classical Nernst model and the SVM model with major factors and all considered factors were compared with the conventional method. According to the testing results, EC values, temperature and Cl - were the three major interference factors which had great influence on the prediction accuracy and precision of soil NO - 3-N concentration employing ISEs. With the optimized input parameters of NO - 3-N ISE potentials, EC, temperature and Cl - ISE potentials, the adjusted R 2 , average absolute error and root mean square error of the SVM model were 0.98, 3.38 mg/L and 4.51 mg/L, respectively. The SVM model based on sensor fusion showed more advantages than the Nernst model and it could successfully achieve the prediction purpose of NO - 3-N with high prediction accuracy and precision of the ISEs in soil extracted solution.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

任海燕,張淼,孔盼,李雁華,蒲攀,張麗楠.基于多參數(shù)融合的土壤硝態(tài)氮檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(S1):96-101. Ren Haiyan, Zhang Miao, Kong Pan, Li Yanhua, Pu Pan, Zhang Li’nan. Prediction of Soil Nitrate-nitrogen Based on Sensor Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(S1):96-101.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-10-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-12-30
  • 出版日期: 2015-12-31
文章二維碼