ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于機(jī)器視覺(jué)的玉米異常果穗篩分方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

公益性行業(yè)科研專項(xiàng)資金資助項(xiàng)目(201203026)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(2015XD003)


Screening Method of Abnormal Corn Ears Based on Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)玉米品種制種過(guò)程中病害果穗的表型識(shí)別問(wèn)題,以玉米果穗整體為研究對(duì)象,,基于二維快速成像技術(shù)實(shí)現(xiàn)了霉變,、蟲(chóng)蛀和機(jī)械損傷3種異常果穗的快速分選。構(gòu)建了單目視覺(jué)便攜式圖像采集裝置,,采集了任意擺放的粘連果穗目標(biāo)圖像,,分別在RGB模型和HIS模型中提取了玉米果穗的6個(gè)顏色特征和5個(gè)紋理特征,并實(shí)現(xiàn)特征參數(shù)的歸一化,。構(gòu)建了病害果穗分類模型,,并采用已知樣本特征向量對(duì)支持向量機(jī)和BP神經(jīng)網(wǎng)絡(luò)方法進(jìn)行訓(xùn)練和對(duì)比分析,最后采用支持向量機(jī)方法實(shí)現(xiàn)了3種異常果穗的快速分選,。實(shí)驗(yàn)結(jié)果表明,,該方法對(duì)霉變異常果穗篩分的正確率可達(dá)96.0%,蟲(chóng)蛀果穗篩分的正確率可達(dá)93.3%,,機(jī)械損傷果穗篩分的正確率可達(dá)90.0%,。

    Abstract:

    The quality of corn seed production and new variety breeding are affected by the problem of abnormal corn ears. Taking the whole corn ear as research object, the sorting method of three abnormal grains (namely moldy corn ears, worm-eaten corn ears and mechanically damaged corn ears) was researched based on two-dimensional fast imaging technology. Firstly, the portable image acquisition device was constructed based on the monocular vision and the corn ear image was acquired. According to these characteristics of corn ear images, six color features in RGB model and HIS model and five texture features in gray scale images were extracted and normalized to build the classification model of these abnormal corn ears. The classifiers were trained with the support vector machine (SVM) and BP neural network for comparison analysis by using the known feature vectors. The result showed that the SVM classifier had higher accuracy than BP neural network classifier. The accuracies of moldy corn ears sorting, worm-eaten corn ears sorting and mechanically damaged corn ears sorting were 96.0%, 93.3% and 90.0%, respectively. The study made an important foundation for realizing the automatic machine screening of abnormal corn ears and had high application value in improving the corn seed quality.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張帆,李紹明,劉哲,朱德海,王越,馬欽.基于機(jī)器視覺(jué)的玉米異常果穗篩分方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(S1):45-49. Zhang Fan, Li Shaoming, Liu Zhe, Zhu Dehai, Wang Yue, Ma Qin. Screening Method of Abnormal Corn Ears Based on Machine Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(S1):45-49.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-10-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-12-30
  • 出版日期: 2015-12-31
文章二維碼