ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于混沌相空間重構的數(shù)控機床運動精度預測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金資助項目(51305476)和“十二五”國家科技重大專項資助項目(2013ZX04005-012)


Prediction of Numerical Control Machine’s Motion Precision Based on Chaotic Phase Space Reconstruction Based on Chaotic Phase Space Reconstruction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對難以通過數(shù)學建模方法分析數(shù)控機床運動精度演化規(guī)律的問題,,提出了基于混沌相空間重構理論的數(shù)控機床運動精度非線性演化預測方法,。采用平均互信息法計算延遲時間,,以虛假最近鄰點法計算最小嵌入維數(shù),,對數(shù)控機床運動精度的一維時間序列進行相空間重構,,獲得與原系統(tǒng)拓撲同構的狀態(tài)空間,?;诨煦缦到y(tǒng)內在的規(guī)律性和有序性,,用相點軌跡描述運動精度在相空間中的演化規(guī)律,,以相點的多維分量構成輸入向量,,以運動精度預測值為輸出向量,構造了基于RBF神經網(wǎng)絡的非線性預測模型,。引入了量子粒子群方法對預測模型參數(shù)進行優(yōu)化,,得到RBF預測網(wǎng)絡的中心點、寬度及連接權值的全局最優(yōu)值,,采用優(yōu)化后的模型對數(shù)控機床運動精度演化趨勢進行了預測,。實驗結果表明,基于混沌相空間重構的預測模型,,可以很好地追蹤數(shù)控機床運動精度的演變趨勢和規(guī)律,,有較高的預測精度,。

    Abstract:

    Aiming at the difficulty to analysis the regularity of CNC machine tools’ motion precision through mathematical model, the nonlinear prediction method based on chaotic phase space reconstruction theory was proposed. The optimum delay time was evaluated by the average mutual information method and the minimum embedding dimension calculated by false nearest neighbor method. The phase space reconstruction for one-dimensional time series of the motion accuracy was implemented. The topology isomorphic state space of the original system was obtained. According to the chaotic system’s inner orderliness and regularity, the phase points’ trajectory was employed to describe motion precision’s evolution regularity in phase space. The input vector was constituted by phase points’ multi-dimensional component, and the predictive value of the motion accuracy was used as output vector. The nonlinear prediction model of CNC machine tools’ motion precision was constructed based on RBF. In order to improve the prediction accuracy and generalization ability, the algorithm of quantum-behaved particle swarm optimization was proposed to select the parameters of RBF. Global optimum value of RBF network’s center, width and connection weights were obtained. Through the prediction model, the evolution trend of CNC machine tools’ motion precision was predicted. The experiments verified that the prediction model based on chaotic phase space reconstruction can trace the evolutionary trends and regularity of the precision properly. The maximum relative error of the precision was less than 6.67%.

    參考文獻
    相似文獻
    引證文獻
引用本文

杜柳青,殷國富,余永維.基于混沌相空間重構的數(shù)控機床運動精度預測[J].農業(yè)機械學報,2015,46(10):397-402. Du Liuqing, Yin Guofu, Yu Yongwei. Prediction of Numerical Control Machine’s Motion Precision Based on Chaotic Phase Space Reconstruction Based on Chaotic Phase Space Reconstruction[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(10):397-402.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-11-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-10-10
  • 出版日期: 2015-10-10
文章二維碼