ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于語(yǔ)音識(shí)別的蔬菜病害視頻語(yǔ)義標(biāo)注與分割方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(31271618)、現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系北京市葉類(lèi)蔬菜創(chuàng)新團(tuán)隊(duì)建設(shè)專(zhuān)項(xiàng)科研資金資助項(xiàng)目(blvt-20)、中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金資助項(xiàng)目(2013XJ021)和北京市大學(xué)生科學(xué)研究與創(chuàng)業(yè)行動(dòng)計(jì)劃資助項(xiàng)目(014bj091)


Video Semantic Annotation and Segmentation Method of Vegetable Disease Knowledge Based on Voice Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了向農(nóng)民提供蔬菜病害知識(shí),基于語(yǔ)音識(shí)別技術(shù)設(shè)計(jì)了一種蔬菜病害視頻標(biāo)注與分割方法,,可將科研機(jī)構(gòu)錄制的蔬菜病害視頻分割成適合手機(jī)播放的小視頻段落。在前期設(shè)計(jì)的視頻鏡頭切分方法基礎(chǔ)上,,進(jìn)一步設(shè)計(jì)出基于語(yǔ)音識(shí)別技術(shù)的視頻語(yǔ)義標(biāo)注及視頻鏡頭聚類(lèi)方法,即首先采用成熟的語(yǔ)音識(shí)別技術(shù),,將視頻鏡頭的語(yǔ)音講解識(shí)別為文本形式,;進(jìn)而基于本體對(duì)識(shí)別文本進(jìn)行相應(yīng)的語(yǔ)義處理,從中提取出能起到指示作用的關(guān)鍵語(yǔ)義實(shí)體,,并將其恰當(dāng)?shù)慕M織形式作為視頻鏡頭的語(yǔ)義標(biāo)注,;最終根據(jù)用戶(hù)提供的關(guān)鍵詞并結(jié)合視頻鏡頭的語(yǔ)義標(biāo)注,對(duì)視頻鏡頭進(jìn)行聚類(lèi)和重組,從而實(shí)現(xiàn)對(duì)于蔬菜病害視頻的最終分割,。所設(shè)計(jì)的視頻鏡頭語(yǔ)義標(biāo)注方法對(duì)2個(gè)測(cè)試視頻的查全率分別達(dá)到96.08%,、94.93%,查準(zhǔn)率分別達(dá)到94.31%,、95.98%,,F-1測(cè)度也分別達(dá)到0.93和0.92;視頻鏡頭聚類(lèi)方法使得2個(gè)視頻的分割查全率分別達(dá)到94.9%,、98.7%,,查準(zhǔn)率分別達(dá)到92.1%、90.2%,,查全率平均大于95%,,查準(zhǔn)率大于90%。證明所設(shè)計(jì)的蔬菜病害視頻標(biāo)注與分割方法具有理論和實(shí)用價(jià)值,。

    Abstract:

    To provide farmers with vegetable diseases knowledge, this paper proposes a method based on voice recognition technology to label and split vegetable diseases videos. Through this method, videos about vegetable diseases can be split into several smaller segments which are more suitable for cell phone. The methods of semantic annotation and video shot clustering were based on video segmentation and voice recognition. In this method, the audio signals of videos were transformed into text strings firstly by voice recognition. Then key semantic entities for labelling video shots semantically were split from the text strings. Finally different video shots were clustered and recombined based on keywords provided by user and the semantic labels of video shots. When applying the method of semantic annotation to two videos, the recall ratios were up to 96.08% and 94.93%, the precision ratios were up to 94.31% and 95.98%, and the F-1 measures were up to 0.93 and 0.92. As for method of video shot clustering, the recall ratios were up to 94.9% and 98.7%, and the precision ratios were up to 92.1% and 90.2%. Results of comparative experiments show that the proposed method is valuable both in theory and practice.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李鑫星,劉春迪,溫皓杰,蘇 葉,傅澤田,張領(lǐng)先.基于語(yǔ)音識(shí)別的蔬菜病害視頻語(yǔ)義標(biāo)注與分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(9):308-313. Li Xinxing, Liu Chundi, Wen Haojie, Su Ye, Fu Zetian, Zhang Lingxian. Video Semantic Annotation and Segmentation Method of Vegetable Disease Knowledge Based on Voice Recognition[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(9):308-313.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-01-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-09-10
  • 出版日期:
文章二維碼