ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

Ahut-Delta并聯(lián)機構改進混沌粒子群算法尺度綜合
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金資助項目(51375014)


Dimensional Synthesis of Ahut-Delta Parallel Mechanism Based on Improved Chaotic Particle Swarm Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對Ahut-Delta并聯(lián)機構,,提出了一種基于改進混沌粒子群算法的尺度綜合方法,。首先提出一種改進混沌粒子群算法,,即采用混沌立方映射初始化種群,,并根據(jù)迭代狀態(tài)指數(shù)性調整慣性權重因子,,同時進行早熟判斷和混沌擾動,,迭代獲得最優(yōu)粒子,。其次將Ahut-Delta并聯(lián)機構優(yōu)化參數(shù)轉變?yōu)榱W泳S度決策變量,,雅可比矩陣的全域均值條件數(shù)和全域波動量構建的全域綜合性能評價指標在其幾何條件約束,、傳動角約束條件下轉換為改進混沌粒子群算法的適應度函數(shù)。最終通過改進混沌粒子群算法優(yōu)化搜索,,優(yōu)化出適應度函數(shù)值最小的最優(yōu)粒子,,從而獲得Ahut-Delta并聯(lián)機構在全域運動性能最佳的尺度參數(shù)。仿真分析結果表明,,所提尺度綜合方法具有正確性和有效性,。

    Abstract:

    Dimensional synthesis was the core content in the parallel mechanism design. Therefore, a dimensional synthesis method based on the improved chaotic particle swarm algorithm was proposed for the Ahut-Delta parallel mechanism. Firstly, improved chaotic particle swarm algorithm was proposed. In the algorithm, initialization of population with chaos cube map was experienced. Then inertia weight was adjusted exponentially on the basis of the algorithm iterative state. Simultaneously, early maturity judgment and chaotic disturbance were utilized to obtain the optimal particle. Secondly, the optimal parameters of Ahut-Delta were changed to the dimensional variables. The population mean condition number and the population fluctuation rate of Jacobian were synthesized to a global performance index, and then the global performance index was changed to the fitness function for the improved chaotic particle swarm algorithm under the geometric constraints and the transmission angle constraints of the Ahut-Delta. Thirdly, an optimization simulation on the scale parameters for Ahut-Delta parallel mechanism was conducted by using two optimization algorithms, i.e., basic particle group algorithm and improved chaotic particle swarm algorithm. Through the analysis of the two algorithms results, the optimal particle with the minimal fitness function value was optimized by means of improved chaotic particle swarm algorithm, and the optimal scales were obtained which remarkably improved Ahut-Delta motion performance. Finally, the results of simulation and analysis verified the correctness and effectiveness of the method.

    參考文獻
    相似文獻
    引證文獻
引用本文

張良安,萬俊,譚玉良. Ahut-Delta并聯(lián)機構改進混沌粒子群算法尺度綜合[J].農業(yè)機械學報,2015,46(8):344-351. Zhang Liangan, Wan Jun, Tan Yuliang. Dimensional Synthesis of Ahut-Delta Parallel Mechanism Based on Improved Chaotic Particle Swarm Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(8):344-351.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-04-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-08-10
  • 出版日期:
文章二維碼