ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于可見光機器視覺的棉花偽異性纖維識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(31228016、61100115),、農(nóng)業(yè)科技成果轉(zhuǎn)化基金資助項目(2012GB23600629)和“十二五”國家科技支撐計劃資助項目(2011BAD21B01,、2012BAD35B07)


Lint Cotton Pseudo-foreign Fiber Detection Based on Visible Spectrum Computer Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高皮棉質(zhì)量和皮棉中異纖的檢測精度,,提出了一種基于機器視覺的棉花偽異性纖維識別方法。皮棉經(jīng)過開松裝置被制成薄棉層,,檢測通道兩側(cè)的相機對棉層進行拍攝,并將采集到的棉層及異纖和偽異纖圖像保存到工控機,通過圖像分塊及閾值分割等算法,,提取偽異纖目標(biāo)區(qū)域,統(tǒng)計獲取區(qū)域的數(shù)個顏色,、形狀和紋理特征,,基于特征數(shù)據(jù),分別使用BP神經(jīng)網(wǎng)絡(luò),、一對一有向無環(huán)圖策略線性核函數(shù)支持向量機和徑向基核函數(shù)支持向量機對兩大類棉花雜質(zhì)進行分類識別,。實驗結(jié)果表明,99.15%的偽異纖目標(biāo)可被準(zhǔn)確識別,,徑向基核函數(shù)支持向量機在棉花異纖和偽異纖分類識別中,,總分類正確率為95.60%,能夠滿足在線檢測的要求,。

    Abstract:

    The quality and level of lint cotton are degraded because there are many foreign fibers and other harmful non-fiber trashes which are mixed into it in the process of plantation, production, transportation and machining. It will bring direct economic loss to textile industry. In order to improve the quality of lint cotton and increase the detection rate of foreign fibers, a pseudo-foreign fiber detection method based on visible spectrum machine vision was proposed. Lint cotton was made of thin layer after opening, and then transferred to the detection passage. Images of cotton layer with foreign fibers and pseudo-foreign fibers were snapshot by two line-scan cameras installed by the side of detection passage, and then it was stored into the industrial personal computers hard disk of experimental platform. Algorithms of image block and threshold were applied to extract pseudo-foreign fibers target areas, and statistical features in color, shape and texture of these target areas were calculated. Three classifiers: BP neural network, one to one directed acyclic graph linear kernel SVM and RBF kernel SVM were used to separate the two categories of cotton impurities. Results showed that 99.15% of the pseudoforeign fibers can be accurately identified, and the performance of RBF kernel SVM was the best among the three classifiers. With average recognition rate of 95.60%, the RBF kernel SVM can meet the online detection requirements of lint cotton trashes.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王欣,李道亮,楊文柱,李振波.基于可見光機器視覺的棉花偽異性纖維識別方法[J].農(nóng)業(yè)機械學(xué)報,2015,46(8):7-14. Wang Xin, Li Daoliang, Yang Wenzhu, Li Zhenbo. Lint Cotton Pseudo-foreign Fiber Detection Based on Visible Spectrum Computer Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(8):7-14.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-11-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-08-10
  • 出版日期:
文章二維碼