ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

壺瓶棗自然損傷的高光譜成像檢測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(31271973)和山西省自然科學(xué)基金資助項(xiàng)目(2012011030-3)


Application of Hyperspectral Imaging for Detection of Natural Defective Features in Huping Jujube Fruit
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    采用高光譜成像技術(shù)(450~1000nm)對(duì)壺瓶棗的5種自然損傷(縮果病,、裂紋,、蟲害,、黑斑病,、鳥啄傷)進(jìn)行識(shí)別研究,。利用高光譜成像系統(tǒng)采集了5種自然損傷及完好棗一共663個(gè)壺瓶棗樣本的高光譜圖像,并提取相應(yīng)的感興趣區(qū)域(ROI),,得到了樣本的光譜數(shù)據(jù),。應(yīng)用偏最小二乘回歸(PLSR)、連續(xù)投影算法(SPA)從全波段中分別提取了9條,、10條特征波長(zhǎng),,利用Kennard-Stone算法將各類樣本按照3∶1的比例隨機(jī)分成訓(xùn)練集(500個(gè))和測(cè)試集(163個(gè)),并對(duì)其建立最小二乘支持向量機(jī)(LS-SVM)判別模型,,結(jié)果表明使用SPA-LS-SVM建立的壺瓶棗自然損傷模型的整體判別正確識(shí)別率為93.2%,。運(yùn)用主成分分析(PCA)對(duì)由SPA提取出的10條特征波長(zhǎng)(535、595,、657,、672、685,、749,、826、898,、964,、999nm)所對(duì)應(yīng)的單波段圖像進(jìn)行數(shù)據(jù)壓縮,分別采用Sobel算子,、區(qū)域生長(zhǎng)算法Regiongrow并結(jié)合主成分圖像識(shí)別出163個(gè)壺瓶棗樣本的邊緣與自然損傷特征區(qū)域,,得出平均正確識(shí)別率達(dá)到90.8%。研究結(jié)果表明:采用高光譜成像技術(shù)可以對(duì)壺瓶棗的自然損傷進(jìn)行光譜判別和圖像識(shí)別,。

    Abstract:

    Hyperspectral imaging technology covered the range of 450~1000nm was employed to detect natural defects (shrink, crack, insect damage, black rot and peck injury) of Huping jujube fruit. 663 sample images were acquired which included five types of natural defects and sound samples. After acquiring hyperspectral images of Huping jujube fruits, the spectral data were extracted from region of interest (ROI). Using Kennard-Stone algorithm, all kinds of samples were randomly divided into training set (500 samples) and test set (163 samples) according to the proportion of 3∶1. Partial least squares regression (PLSR) and successive projections algorithm (SPA) were conducted to select optimal sensitive wavelengths (SWs), as a result, 9SWs and 10SWs were selected, respectively. And then, least squaressupport vector machine (LSSVM) discriminate model was established by using the selected wavebands. The results showed that the discriminate accuracy of the SPA-LS-SVM method was 93.2%. Then, images corresponding to ten sensitive bands (535, 595, 657, 672, 685, 749, 826, 898, 964, 999nm) selected by SPA were executed to PCA. Finally, the images of PCA were employed to identify the location and area of natural defects feature through imaging processing. Using Sobel operator, region growing algorithm and the images of PCA, the edge and defect feature of 163 Huping jujube fruits could be recognized, the detect precision was 90.8%. This investigation demonstrated that hyperspectral imaging technology could detect the natural defects of shrink, crack, insect damage, black rot and peck injury in Huping jujube fruit in spectral analysis and feature detection, which provided a theoretical reference for the natural defects nondestructive detection of jujube fruit.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

薛建新,張淑娟,張晶晶.壺瓶棗自然損傷的高光譜成像檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(7):220-226. Xue Jianxin, Zhang Shujuan, Zhang Jingjing. Application of Hyperspectral Imaging for Detection of Natural Defective Features in Huping Jujube Fruit[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(7):220-226.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-01-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-07-10
  • 出版日期: 2015-07-10
文章二維碼