ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于what-where雙通道理論的移動機器人場景仿生識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

教育部春暉計劃資助項目(12202528),、四川省制造與自動化高校重點實驗室開放基金資助項目( SZJJ2011-019)和西華大學(xué)校重點項目(Z1120223)


Bionic Scene Recognition of Agricultural Mobile Robot Based on what-where Dual Channel Theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決自主移動農(nóng)業(yè)機器人在復(fù)雜工作環(huán)境進行視覺導(dǎo)航的場景識別,根據(jù)what-where雙通道理論建立了場景感知模型以及場景表示模型,,提出了一種基于概率框架的場景仿生識別方法,?;趯Ρ榷燃僭O(shè)和中心假設(shè)計算顯著圖并建立能量函數(shù)對該顯著圖進行優(yōu)化,;利用專家網(wǎng)絡(luò)分析視覺注意焦點的內(nèi)容作為what信息,,以視覺注意焦點轉(zhuǎn)移形成的掃視序列作為where信息,;根據(jù)動作識別規(guī)則,,利用what信息和where信息建立可觀測的馬爾可夫鏈模型實現(xiàn)場景識別,。移動機器人場景識別過程與人的識別過程相似,實驗證明所提方法對室內(nèi)場景識別性能良好,,準確率平均達87.3%,。

    Abstract:

    Scene recognition is the key to visual navigation for the agricultural mobile robot in unknown environment. This paper used what-where dual channel theory to build the models of scene perception, scene representation and scene recognition, and proposed a bionic method of scene recognition on the basis of probabilistic framework. This method first computed the bottomup saliency map of scene based on the contrast prior and the center prior, which can be further optimized with the global energy function. Then shifted the visual focus of saliency map to obtain the saccade sequence as the “where information”, and analyzed the content of the visual focus to obtain the “what information” with the experts network comprised of single layer perceptron. Lastly, according to the action recognition regularity of human, built the discrete and observable Markov model using the “what information” and the “where information”. The parameters of the model can be determined by training the frame images from the camera on the mobile robot and can be viewed as the prior knowledge about different scenes, which can be recognized by maximizing the likelihood probability of the Markov recognition model. The whole recognition process is similar to human`s. Experimental results show that this method has good performance for indoor scenes and the recognition accuracy averaged out at 87.3%.

    參考文獻
    相似文獻
    引證文獻
引用本文

王富治,宋昌林,蔣代君,馮代偉.基于what-where雙通道理論的移動機器人場景仿生識別[J].農(nóng)業(yè)機械學(xué)報,2015,46(7):10-16. Wang Fuzhi, Song Changlin, Jiang Daijun, Feng Daiwei. Bionic Scene Recognition of Agricultural Mobile Robot Based on what-where Dual Channel Theory[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(7):10-16.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-10-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-07-10
  • 出版日期: 2015-07-10
文章二維碼