ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于MK—SVR模型的小麥葉面積指數(shù)遙感反演
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(41271415),、江蘇省高校自然科學(xué)基金資助項目(12KJB520018),、省屬高校國際科技合作聘專重點資助項目,、“六大人才高峰”高層次人才資助項目(2011—NY039)、江蘇省高校優(yōu)秀科技創(chuàng)新團隊資助項目和揚州大學(xué)科技創(chuàng)新培育基金資助項目(2013CXJ028)


Monitoring Wheat Leaf Area Index Using MK—SVR Algorithmic Model and Remote Sensing Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了運用多核支持向量回歸(MK—SVR)算法構(gòu)建小麥葉面積指數(shù)(LAI)遙感監(jiān)測模型,。以2010—2013年試驗樣點小麥拔節(jié),、孕穗、開花3期的實測LAI數(shù)據(jù)為基礎(chǔ),,同步獲取我國自主研發(fā)的環(huán)境減災(zāi)衛(wèi)星HJ—CCD對該研究區(qū)域的影像數(shù)據(jù),,分析了各生育期小麥LAI與8種植被指數(shù)間的相關(guān)性。以顯著相關(guān)的植被指數(shù)作為輸入?yún)?shù),,使用MK—SVR算法構(gòu)建了每個生育期的小麥LAI反演模型,,即MK—SVR—LAI模型。為了評價模型,,每期使用單一核支持向量回歸(SK—SVR),、偏最小二乘(PLS)回歸算法構(gòu)建了SK—SVR—LAI、PLS—LAI模型,。將模型估算LAI值和田間觀測LAI值進行比對,,以決定系數(shù)(R2)和均方根誤差(RMSE)為指標評價并比較了模型。結(jié)果表明:3個生育期MK—SVR—LAI模型的RMSE值均低于參比模型,,拔節(jié)期為0.2931,,孕穗期為0.4668,,開花期為0.5486,且該模型的R2也都最高,,拔節(jié)期為0.7624,,孕穗期為0.8018,開花期為0.6689,。

    Abstract:

    The multi-kernel support vector regression (MK—SVR) was used to construct remote sensing monitoring algorithmic models for estimating leaf area index (LAI) in wheat. The experiment was carried out during 2010—2013 in Jiangsu Province, China. Based on LAI in wheat and synchronous China’s domestic HJ—CCD multi-spectral data at jointing stage, booting stage and anthesis stage respectively, the relationships between LAI and eight vegetation indices were analyzed at corresponding period. Taking these vegetation indices which were significantly related to LNC at 0.01 level as input parameters, the remotely estimating model was established based on MK—SVR to invert LAI, named the MK—SVR—LAI model. Meanwhile, in order to evaluate the MK—SVR—LAI model, single kernel support vector regression (SK—SVR)and partial least squares (PLS) were employed to establish models at each period, named the SK—SVR—LAI and PLS—LAI models. Comparing predicted LAI by model with actual measured LAI, the coefficient of determination (R2) and root mean square error (RMSE) were used to evaluate models. The results showed that the lowest RMSE and the highest R2,were obtained by using MK—SVR—LAI model at each stage, of which the RMSE and the R2 were 0.2931 and 0.7624 at jointing stage, 0.4668 and 0.8018 at booting stage, 0.5486 and 0.6689 at anthesis stage, respectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

王麗愛,譚昌偉,楊昕,周旭東,朱新開,郭文善.基于MK—SVR模型的小麥葉面積指數(shù)遙感反演[J].農(nóng)業(yè)機械學(xué)報,2015,46(5):245-251. Wang Liai, Tan Changwei, Yang Xin, Zhou Xudong, Zhu Xinkai, Guo Wenshan. Monitoring Wheat Leaf Area Index Using MK—SVR Algorithmic Model and Remote Sensing Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(5):245-251.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-08-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-05-10
  • 出版日期:
文章二維碼