ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

高光譜遙感圖像DE-self-training半監(jiān)督分類算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(41171269),、江蘇省高校自然科學(xué)研究面上項(xiàng)目(14KJB170010)、環(huán)保公益性行業(yè)科研專項(xiàng)項(xiàng)目(201309037)、江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目(164320H101),、地球系統(tǒng)科學(xué)數(shù)據(jù)共享平臺(tái)資助項(xiàng)目(2005DKA32300)和江蘇省普通高校研究生科研創(chuàng)新計(jì)劃資助項(xiàng)目(1812000002A403)


Semi-supervised Classification Algorithm for Hyperspectral Remote Sensing Image Based on DE-self-training
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    提出了一種高光譜遙感圖像半監(jiān)督分類算法DE-self-training,。利用少量標(biāo)記樣本作為初始訓(xùn)練集,,基于改進(jìn)的Self-training算法構(gòu)建初始分類器,,對(duì)未標(biāo)記樣本進(jìn)行預(yù)測(cè),;然后從分類結(jié)果中按一定比例隨機(jī)選取部分樣本,,連同其類別標(biāo)記一起加入訓(xùn)練集中,,再用擴(kuò)大的訓(xùn)練集重新訓(xùn)練分類器,并對(duì)剩余的未標(biāo)記樣本進(jìn)行預(yù)測(cè),。如此迭代地進(jìn)行訓(xùn)練—預(yù)測(cè)—挑選樣本擴(kuò)大訓(xùn)練集過(guò)程,。同時(shí),在迭代訓(xùn)練過(guò)程中,,運(yùn)用基于最近鄰域規(guī)則的數(shù)據(jù)剪輯策略對(duì)擴(kuò)大訓(xùn)練集時(shí)產(chǎn)生的誤標(biāo)記樣本進(jìn)行過(guò)濾,,以保證訓(xùn)練集的質(zhì)量,不斷迭代地訓(xùn)練出更精確的分類器,,最終使所有未標(biāo)記樣本都獲得類別標(biāo)記,。以AVIRIS Indian Pines和Hyperion EO—1 Botswana作為實(shí)驗(yàn)數(shù)據(jù)對(duì)DE-self-training算法進(jìn)行測(cè)試,并與基于支持向量機(jī)的分類結(jié)果作比對(duì),。實(shí)驗(yàn)表明,,DE-self-training算法可以在標(biāo)記樣本數(shù)量有限條件下,充分挖掘未標(biāo)記樣本的有用信息,,使總體分類精度和Kappa系數(shù)都有不同程度的提高,。

    Abstract:

    A semi-supervised classification algorithm named DE-self-training for hyperspectral remote sensing images was proposed. Firstly, taking a few labeled samples as initial training set, the initial classification model was constructed by using improved Self-training algorithm to classify unlabeled samples. Then, partial samples and corresponding labels were selected randomly as a proportion from classification results into training set, and the augmented training set was used to retrain the model to classify the unlabeled samples. Then, the algorithm continued the process of training-classifying-picking out samples to augment training set iteratively. During this process, in order to ensure the training set’s quality and the correct labeling of new increased samples, the algorithm edited and purified mislabeled samples by using data editing strategy based on the nearest neighbor rule. Finally, the proposed algorithm trained classification model iteratively to get a more accurate result until the unlabeled samples set was empty. In the experiments, AVIRIS Indian Pines and Hyperion EO—1 Botswana data were used to test the algorithm. According to the comparison with SVM classification results, the DE-self-training algorithm can get higher accuracy and Kappa coefficients by utilizing unlabeled samples information under limited labeled samples.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王俊淑,江南,張國(guó)明,胡斌,李楊,呂恒.高光譜遙感圖像DE-self-training半監(jiān)督分類算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(5):239-244. Wang Junshu, Jiang Nan, Zhang Guoming, Hu Bin, Li Yang, Lü Heng. Semi-supervised Classification Algorithm for Hyperspectral Remote Sensing Image Based on DE-self-training[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(5):239-244.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-08-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-05-10
  • 出版日期:
文章二維碼