ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于隨機(jī)森林的魚粉蛋白近紅外定量分析
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(11226219,、61164020)和廣西自然科學(xué)基金資助項(xiàng)目(2014GXNSFBA118023)


Near-infrared Analysis of Fishmeal Protein Based on Random Forest
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于近紅外(NIR)光譜技術(shù),,采用隨機(jī)森林(RF)回歸方法測(cè)定飼料魚粉的蛋白含量,??紤]到RF模型的隨機(jī)性,,通過調(diào)試決策樹數(shù)量(ntree)和分裂變量數(shù)目(nsv)來進(jìn)行模型優(yōu)選,;利用基尼系數(shù)(G)的下降量來判斷近紅外波長(zhǎng)變量的建模重要性,,進(jìn)而為魚粉蛋白的NIR分析優(yōu)選信息波長(zhǎng),以提高NIR定量分析精度,。根據(jù)統(tǒng)計(jì)學(xué)原理,,選擇具有較低計(jì)算復(fù)雜度的等效最優(yōu)模型。優(yōu)選的RF模型構(gòu)建471個(gè)決策樹,,需要隨機(jī)的103個(gè)波長(zhǎng)變量進(jìn)行樹節(jié)點(diǎn)分裂,,同時(shí)通過計(jì)算節(jié)點(diǎn)分裂前后G的平均下降量來選擇52個(gè)近紅外信息波長(zhǎng)進(jìn)行定標(biāo)校正,得到等效最優(yōu)的校正模型,,校正均方根偏差和校正相關(guān)系數(shù)分別為3.970%和0.943,;經(jīng)過獨(dú)立的預(yù)測(cè)集樣品對(duì)最優(yōu)RF模型進(jìn)行檢驗(yàn),預(yù)測(cè)均方根偏差為5.271%,,預(yù)測(cè)相關(guān)系數(shù)為0.906,,說明RF回歸結(jié)合G系數(shù)的波長(zhǎng)優(yōu)選能夠有效地提高NIR光譜應(yīng)用于魚粉蛋白定量的預(yù)測(cè)能力。

    Abstract:

    Random forest (RF) regression algorithm was utilized for determination of protein content in fishmeal samples based on near-infrared (NIR) spectrometry. Considering the randomness of RF method, the optimized models were selected by tuning the two vital modeling parameters of the number of decision trees (ntree) and the number of split variables (nsv). The descending of Gini coefficient (G) is taken as the indicator performing the modeling importance of NIR valuables. It was used to select the informative wavelengths for NIR analysis of fishmeal, with an aim to improve the accuracy of quantitative models. According to statistical theory, we tried to select equivalent optimal model with relatively low computational complexity. The optimized RF model needed to construct 471 decision trees and randomly select 103 wavelength variables for node splitting when the decision trees grow. Simultaneously, 52 NIR informative wavelengths can be selected out according to the average of G descending values based on the trees in the forest. The equivalent optimized RF model output the root mean square error (RMSEv) and correlation coefficient (Rv) of validation set were 3.970% and 0.943, respectively. The optimized model was further evaluated by using the prediction samples that were excluded from modeling process, with the RMSEp of 5.271%, and the Rp of 0.906. Results showed that RF regression combined with G coefficients for wavelength selection is feasible and effective to improve the NIR predictive ability for quantitative determination of fishmeal protein.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳華舟,陳福,石凱,封全喜.基于隨機(jī)森林的魚粉蛋白近紅外定量分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(5):233-238. Chen Huazhou, Chen Fu, Shi Kai, Feng Quanxi. Near-infrared Analysis of Fishmeal Protein Based on Random Forest[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(5):233-238.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-08-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-05-10
  • 出版日期:
文章二維碼