ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

番茄葉片早疫病近紅外高光譜成像檢測技術(shù)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家高技術(shù)研究發(fā)展計劃(863計劃)資助項目(2013AA102301),、高等學校博士學科點專項科研基金資助項目(20130101110104),、教育部留學回國人員科研啟動基金資助項目和中央高?;究蒲袠I(yè)務費專項資金資助項目(2014FZA6005)


Detection of Early Blight on Tomato Leaves Using Near-infrared Hyperspectral Imaging Technique
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了基于格拉姆斯密特(MGS)模型和貝葉斯羅蒂斯克回歸(BlogReg)的近紅外高光譜成像技術(shù)檢測番茄葉片早疫病的方法,。利用高光譜圖像采集系統(tǒng)獲取波長874~1734nm范圍內(nèi)70個染病和80個健康番茄葉片的高光譜圖像,,選取染病和健康葉片30像素×30像素感興趣區(qū)域的光譜反射率。建立了番茄葉片早疫病的最小二乘-支持向量機(LS-SVM)識別模型,,再通過MGS和BlogReg提取特征波長(EW),,分別得到5個(911、1409,、1511,、1609、1656nm)和9個(901,、905,、908、915,、918,、1123、1305,、1460,、1680nm)特征波長,并建立EW-LS-SVM和EW-LDA模型,。在所有模型中,,建模集的正確識別率為93%~98%,預測集的正確識別率為96%~100%,。結(jié)果表明,,近紅外高光譜成像技術(shù)檢測番茄葉片早疫病是可行的,MGS和BlogReg都是有效的特征波長提取方法,。

    Abstract:

    Early detection of early blight on tomato leaves using NIR hyperspectral imaging technique based on modified gram schmidt (MGS) model and Bayesian logistic regression (BlogReg) were studied. Hyperspectral images of 70 infected and 80 healthy tomato leaves were acquired by hyperspectral imaging system in the spectral wavelength of 874~1734nm. Spectral reflectance of 30×30 pixels from region of interest (ROI) of hyperspectral image was extracted. Least squares-support vector machine (LS-SVM) model based on the full wavelength was established to detect early blight. Five (911nm, 1409nm, 1511nm, 1609nm, 1656nm) and nine wavelengths (901nm, 905nm, 908nm, 915nm, 918nm, 1123nm, 1305nm, 1460nm, 1680nm) were selected by MGS and BlogReg, respectively. Then, LS-SVM and linear discriminant analysis (LDA) models were built based on these effective wavelengths. Among these models, the correct classification rates were 93%~98% in calibration set and 96%~100% in prediction set, respectively. The result indicated that it was feasible to detect early blight on tomato leaves by using NIR hyperspectral imaging technique.

    參考文獻
    相似文獻
    引證文獻
引用本文

謝傳奇,方孝榮,邵詠妮,何 勇.番茄葉片早疫病近紅外高光譜成像檢測技術(shù)[J].農(nóng)業(yè)機械學報,2015,46(3):315-319. Xie Chuanqi, Fang Xiaorong, Shao Yongni, He Yong. Detection of Early Blight on Tomato Leaves Using Near-infrared Hyperspectral Imaging Technique[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(3):315-319.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-04-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-03-10
  • 出版日期: 2015-03-10
文章二維碼