ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SVM的多方位聲散射數(shù)據(jù)協(xié)作融合魚分類與識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(41306038)


Multi-azimuth Acoustic Scattering Data Cooperative Fusion Using SVM for Fish Classification and Identification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決基于聲散射數(shù)據(jù)的魚分類與識別問題,,提出了一種基于SVM的多方位聲散射數(shù)據(jù)協(xié)作融合魚分類方法,。首先,,提取多方位聲散射數(shù)據(jù)的小波包系數(shù)奇異值,、時(shí)域質(zhì)心及離散余弦變換系數(shù)特征,并進(jìn)行特征融合,;然后,,采用支持向量機(jī)(SVM)分類器對每個(gè)方位提取的特征做出決策,,并將決策結(jié)果表示成后驗(yàn)概率的形式,,同時(shí)利用每個(gè)方位的決策概率對其他方位的決策進(jìn)行加權(quán),;最后輸出分類結(jié)果。采用3類魚作為研究對象,,得到不同方位數(shù)量條件下基于協(xié)作融合方法的分類正確率最終達(dá)到92%以上,。試驗(yàn)數(shù)據(jù)處理結(jié)果表明,隨著方位數(shù)量的增加,,總體分類正確率呈升高的趨勢,,基于SVM的協(xié)作融合方法可以有效提高分類正確率。

    Abstract:

    In order to solve fish classification and identification problems based on acoustic scattering data, a data fusion method based on SVM posterior probability was deduced, and a multi azimuth acoustic scattering data cooperative fusion fish classification method based on support vector machine (SVM) was proposed. Firstly, the wavelet packets coefficients singular value feature, temporal centroid feature and discrete cosine transform coefficients feature using multi azimuth acoustic scattering data were extracted, which reflected acoustic scattering characteristics of fish from different aspects. Secondly, the SVM classifiers made the decisions for features of each azimuth and the results were expressed in the form of posterior probability, each azimuth decision probability was used to weight the decisions of other azimuth simultaneously. Finally, the classification results were the ultimate output. Three kinds of fish were selected as the research objects and the classification accuracy (more than 92%) was presented based on the cooperative fusion method under the conditions of different numbers of azimuth. The processing results of experimental data indicated that the overall classification accuracy showed an increasing trend with the increase of number of azimuth. To examine the performance of classification further, large carp samples and small carp samples were used as training and testing samples mutually. The classification accuracy showed a increasing trend with the increase of number of azimuth in both cases, which reached more than 90% ultimately. The multi azimuth acoustic scattering data cooperative fusion method based on SVM can improve the correct classification ratios effectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

杜偉東,李海森,魏玉闊,徐 超.基于SVM的多方位聲散射數(shù)據(jù)協(xié)作融合魚分類與識別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(3):268-275. Du Weidong, Li Haisen, Wei Yukuo, Xu Chao. Multi-azimuth Acoustic Scattering Data Cooperative Fusion Using SVM for Fish Classification and Identification[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(3):268-275.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-10-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-03-10
  • 出版日期: 2015-03-10
文章二維碼