ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)人工蜂群模糊聚類(lèi)的葡萄圖像快速分割方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(31171457)


Grape Image Fast Segmentation Based on Improved Artificial Bee Colony and Fuzzy Clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為解決基于模糊C-均值聚類(lèi)(FCM)的圖像分割算法需要預(yù)先給定初始聚類(lèi)數(shù)目和聚類(lèi)中心,,易使得算法陷入局部最優(yōu)的問(wèn)題,提出一種改進(jìn)的人工蜂群優(yōu)化模糊聚類(lèi)的圖像分割方法,。該方法在傳統(tǒng)的人工蜂群的基礎(chǔ)上進(jìn)行優(yōu)化,,以FCM算法中目標(biāo)函數(shù)為基礎(chǔ)改進(jìn)人工蜂群的適應(yīng)度函數(shù),運(yùn)用蜂群行為中的采蜜蜂,、跟隨蜂和偵察蜂的分工合作來(lái)快速求解圖像中的最優(yōu)初始聚類(lèi)中心,,將求出的最優(yōu)聚類(lèi)中心輸入給FCM進(jìn)行處理,,根據(jù)最大隸屬度原則對(duì)果實(shí)圖像進(jìn)行分割。以300幅不同光照情況下拍攝的夏黑葡萄果進(jìn)行分割試驗(yàn),,試驗(yàn)結(jié)果表明,,改進(jìn)的圖像分割方法能更快地將水果從自然環(huán)境中分割識(shí)別出來(lái),單幅圖像平均分割時(shí)間為0.2193s,,正確分割率達(dá)到90.33%,,能滿(mǎn)足采摘機(jī)器人及水果分級(jí)系統(tǒng)對(duì)目標(biāo)圖像的實(shí)時(shí)性要求。

    Abstract:

    The image segmentation algorithm based on the fuzzy C-average clustering (FCM) needs initial cluster number and cluster center in advance, which make the algorithm easy to fall into local optimum. An image segmentation method based on improved artificial swarm optimization fuzzy clustering was proposed. The optimization of proposed method was conducted on the basis of the traditional artificial colony. The fitness function of artificial colony was improved by using objective function of FCM algorithm. With the collaboration of bee colony, follow bees and computerized bee, the optimal initial clustering center could be solved quickly. Then the optimal initial clustering center was input into FCM and image segmentation was finally realized by using maximum membership principle. The fruit segmentation experiment was carried out with 300 ‘summer black’ grape photos taken under frontlight, backlight and normal light illumination conditions. The experiment proves that the proposed method can identify fruit from the natural environment quickly. The average time for segmentation was 0.2193s per photo and accuracy was 90.33%. The time consuming was shorter and the accuracy was higher than OTSU and traditional FCM algorithm. It can meet the real-time requirement of picking robot and fruit grading system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

羅陸鋒,鄒湘軍,楊 洲,李國(guó)琴,宋西平,張 叢.基于改進(jìn)人工蜂群模糊聚類(lèi)的葡萄圖像快速分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(3):23-28. Luo Lufeng, Zou Xiangjun, Yang Zhou, Li Guoqin, Song Xiping, Zhang Cong. Grape Image Fast Segmentation Based on Improved Artificial Bee Colony and Fuzzy Clustering[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(3):23-28.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-08-09
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2015-03-10
  • 出版日期: 2015-03-10
文章二維碼