ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于PLS和改進(jìn)CVR的數(shù)控機(jī)床熱誤差建模
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(551105336)、浙江省自然科學(xué)基金資助項(xiàng)目(Y1100281),、浙江省重點(diǎn)科技創(chuàng)新團(tuán)隊(duì)計(jì)劃資助項(xiàng)目(2009R50008)和浙江省科技廳公益性應(yīng)用研究計(jì)劃資助項(xiàng)目(2014C31089)


Thermal Error Modeling of CNC Machine Tool Based on Partial Least Squares and Improved Core Vector Regression
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提高支持向量回歸(SVR)模型的預(yù)測(cè)能力,,將核心向量回歸(Core vector regression, CVR)方法引入到數(shù)控機(jī)床熱誤差建模中,,并采用偏最小二乘(Partial least squares, PLS)算法從輸入樣本提取主成分,,構(gòu)建特征集,,然后使用改進(jìn)的粒子群優(yōu)化(Improved particle swam optimization, IPSO)算法對(duì)CVR的模型參數(shù)進(jìn)行尋優(yōu),,從而提出一種基于PLS—IPSO—CVR的數(shù)控機(jī)床熱誤差建模方法,。仿真實(shí)驗(yàn)表明,,所提出的建模方法在預(yù)測(cè)精度和速度方面優(yōu)于傳統(tǒng)SVR模型和BP神經(jīng)網(wǎng)絡(luò)模型,,從而驗(yàn)證了組合建模方法的可行性和有效性。

    Abstract:

    Support vector regression (SVR) is an effective tool for machine error modeling. To improve the predicted performance of SVR model, the core vector regression (CVR) algorithm which is suitable for resolving the training of large-scale sample data was introduced into thermal error modeling for CNC machine tool. Principal components were firstly extracted from the sample set using the feature extraction of partial least squares (PLS) algorithm to construct the feature set, which would reduce the number of state variables without information loss by dimension reduction, data de-noising and eliminating the correlative between variables. Then improved particle swam optimization (IPSO) was applied for determining the parameters of CVR to get the optimal performance of the thermal error model, and the proposed combined method was called PLS—IPSO—CVR. Experimental results showed that the training speed of PLS—IPSO—CVR model was much faster and it produced fewer support vectors on very large sample data in comparison with SVR and BP neural network. Thus the feasibility and effectiveness of this combined modeling method was verified.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

余文利,姚鑫驊,孫磊,傅建中.基于PLS和改進(jìn)CVR的數(shù)控機(jī)床熱誤差建模[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):357-364. Yu Wenli, Yao Xinhua, Sun Lei, Fu Jianzhong. Thermal Error Modeling of CNC Machine Tool Based on Partial Least Squares and Improved Core Vector Regression[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(2):357-364.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-03-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-02-10
  • 出版日期: 2015-02-10
文章二維碼