ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于擴(kuò)展Kalman粒子濾波的汽車行駛狀態(tài)和參數(shù)估計
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家留學(xué)基金資助項目(留金發(fā)[2013]3018號)


Vehicle State and Parameter Estimation under Driving Situation Based on Extended Kalman Particle Filter Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    汽車行駛過程中的某些參數(shù)通常需要通過實驗室內(nèi)較為昂貴的試驗設(shè)備獲得,測量成本較高,,而獲取車輛的行駛狀態(tài)和參數(shù)對于車輛行駛過程中的控制有著重要的意義,。通常情況下,需要將車輛行駛狀態(tài)變量和側(cè)偏剛度等參數(shù)進(jìn)行聯(lián)合估計,。這些參數(shù)將會被用于車輛動力學(xué)模型來分析汽車的操縱狀態(tài),。本文建立了包含定常統(tǒng)計特性噪聲的汽車動力學(xué)模型,利用龍格—庫塔方法模擬模型,,引入擴(kuò)展Kalman濾波技術(shù),,生成粒子濾波重要性概率密度函數(shù),對狀態(tài)和參數(shù)同時進(jìn)行估計,,仿真結(jié)果表明,,擴(kuò)展Kalman粒子濾波技術(shù)改善了標(biāo)準(zhǔn)粒子濾波算法的精度,驗證了算法的有效性,。

    Abstract:

    Individual parameters of vehicle dynamic systems were traditionally derived from expensive component indoor laboratory tests as a result of an identification procedure. These parameters were then transferred to vehicle models used at a design stage to simulate the vehicle handling behavior and the cost of measurement was high. At the same time,,acquiring the vehicle’s driving status and parameters had important significance for the process controlling of the vehicle. Normally, the status and parameter of the test vehicle needed to be estimated together, which were then transferred to vehicle models and used at a design stage to simulate the vehicle handling behavior. A vehicle dynamics system containing constant noise and non-linear model was established,Runge—Kutta method was used to simulate the model. The extended Kalman filter algorithm was used as the importance density function to update particles in particle filter, with which the local state estimated values and parameters can be calculated. The simulation results showed that the proposed algorithm improved the accuracy of standard particle filter.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

包瑞新,賈敏,Edoardo Sabbioni,于會龍.基于擴(kuò)展Kalman粒子濾波的汽車行駛狀態(tài)和參數(shù)估計[J].農(nóng)業(yè)機(jī)械學(xué)報,2015,46(2):301-306. Bao Ruixin, Jia Min, Edoardo Sabbioni, Yu Huilong. Vehicle State and Parameter Estimation under Driving Situation Based on Extended Kalman Particle Filter Method[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(2):301-306.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-08-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-02-10
  • 出版日期: 2015-02-10
文章二維碼