ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

順序同化不同時(shí)空分辨率LAI的冬小麥估產(chǎn)對(duì)比研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(41371326)和“十二五”國(guó)家科技支撐計(jì)劃資助項(xiàng)目(2012BAH29B02)


Comparison of Winter Wheat Yield Estimation by Sequential Assimilation of Different Spatio temporal Resolution Remotely Sensed LAI Datasets
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    選擇PyWOFOST模型為動(dòng)態(tài)模型,,以葉面積指數(shù)(LAI)為狀態(tài)變量,,遙感LAI為觀測(cè)值,,采用集合卡爾曼濾波(EnKF)同化算法,,研發(fā)了一種遙感LAI與作物模型同化的區(qū)域冬小麥產(chǎn)量估測(cè)系統(tǒng),。為消除云的污染,,采用Savitzky-Golay (S-G)濾波算法重構(gòu)時(shí)間序列MODIS LAI,;通過構(gòu)建地面觀測(cè)LAI與3個(gè)關(guān)鍵物候期Landsat TM植被指數(shù)回歸統(tǒng)計(jì)模型,,獲得區(qū)域TM LAI,;通過融合3個(gè)關(guān)鍵物候期的TM LAI與時(shí)間序列S-G MODIS LAI,,生成尺度轉(zhuǎn)換LAI。對(duì)比分析3種不同時(shí)空分辨率的遙感LAI的同化精度,,研究結(jié)果表明,,同化尺度轉(zhuǎn)換LAI獲得了最高的同化精度,與官方縣域統(tǒng)計(jì)產(chǎn)量相比, 在潛在模式下,,決定系數(shù)由同化前的0.24提高到0.47,,均方根誤差由602kg/hm2下降到478kg/hm2。結(jié)果表明,,遙感觀測(cè)與作物模型的尺度調(diào)整對(duì)提高冬小麥同化模型精度具有重要作用,,遙感LAI與作物模型的EnKF同化方法是一種有效的區(qū)域作物產(chǎn)量估測(cè)方法,。

    Abstract:

    Data assimilation method combines with remotely sensed data and crop growth model has become an important hotspot in crop yield forecasting. PyWOFOST model and remotely sensed LAI were respectively selected as the crop growth model and observations to construct a regional winter wheat yield forecasting scheme with EnKF algorithm. To eliminate cloud contamination, a Savitzky-Golay (S-G) filtering algorithm was applied to the MODIS LAI products to obtain filtered LAIs. Regression models between field-measured LAI and Landsat TM vegetation indices were established and multi-temporal TM LAIs was derived. The TM LAI with time series of MODIS LAI was integrated to generate scale-adjusted LAI. Compared the assimilation accuracy using these three different spatio-temporal resolution remotely sensed data, validation results demonstrated that assimilating the scale-adjusted LAI achieved the best prediction accuracy, in potential mode, the determination coefficient (R2) increased from 0.24 which without assimilation to 0.47 and RMSE decreased from 602kg/hm2 to 478kg/hm2 at county level compared to the official statistical yield data. Our results indicated that the scale adjustment between remotely sensed observation and crop model greatly improved the accuracy of winter wheat yield forecasting. The assimilation of remotely sensed data into crop growth model with EnKF can provide a reliable approach for regional crop yield estimation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃健熙,李昕璐,劉帝佑,馬鴻元,田麗燕,蘇 偉.順序同化不同時(shí)空分辨率LAI的冬小麥估產(chǎn)對(duì)比研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(1):240-248. Huang Jianxi, Li Xinlu, Liu Diyou, Ma Hongyuan, Tian Liyan, Su Wei. Comparison of Winter Wheat Yield Estimation by Sequential Assimilation of Different Spatio temporal Resolution Remotely Sensed LAI Datasets[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(1):240-248.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-04-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-01-10
  • 出版日期: 2015-01-10
文章二維碼