ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于彈性動量深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的果體病理圖像識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

“十二五”國家科技支撐計劃資助項目(2013BAD15B04),、國家自然科學(xué)基金資助項目(61102126)和湖南文理學(xué)院重點(建設(shè))學(xué)科建設(shè)項目


A Deep Learning Network for Recognizing Fruit Pathologic Images Based on Flexible Momentum
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實時預(yù)警果蔬病害和輔助診斷果蔬疾病,實現(xiàn)無人值守的病蟲害智能監(jiān)控,設(shè)計了深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的果蔬果體病理圖像識別方法,,基于對網(wǎng)絡(luò)誤差的傳播分析,,提出彈性動量的參數(shù)學(xué)習(xí)方法,,以蘋果為例進行果體病理圖像的識別試驗,。結(jié)果表明,,該方法召回率為98.4%,;同其他同源更新機制相比,,彈性動量方案能顯著改善學(xué)習(xí)網(wǎng)絡(luò)的果蔬病害識別準(zhǔn)確率,;其收斂曲線平滑,5h時耗能實現(xiàn)收斂,,對不同數(shù)據(jù)集也有良好泛化性能,。

    Abstract:

    Agricultural internet of things (IOT) and sensor technology has been widely used in the informationalized and mechanized orchard. The research aimed at both constructing an automatic assistant diagnosis and a real time alerting for plant disease and insect pest. The purpose also covered to realize an unmanned pest disease monitoring and to release some human interaction in making a diagnosis. A method for pathologic image recognition diagnosis based on deep learning neural network was designed and an innovative method for updating free parameters of the network was proposed on the basis of analyzing the error propagation of the network, so called the gradient descendent with flexible momentum. Then, computer recognizing pathologic images of fruit sphere was researched into systematically, where the apple was selected as a subject. Experiment result revealed the method manifested a recall rate at 98.4%. And in parallel with several well known updating schemes based momentum, the proposal was able to obviously improve the accuracy of learning network with a flatter converging curve, at a cost of short converging time. The test upon the several popular benchmark data sets also demonstrated it could perform an effective recognition on the image pattern.

    參考文獻
    相似文獻
    引證文獻
引用本文

譚文學(xué),趙春江,吳華瑞,高榮華.基于彈性動量深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的果體病理圖像識別[J].農(nóng)業(yè)機械學(xué)報,2015,46(1):20-25. Tan Wenxue, Zhao Chunjiang, Wu Huarui, Gao Ronghua. A Deep Learning Network for Recognizing Fruit Pathologic Images Based on Flexible Momentum[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(1):20-25.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-08-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-01-10
  • 出版日期: 2015-01-10
文章二維碼