ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

自主導(dǎo)航農(nóng)業(yè)車輛的全景視覺多運(yùn)動(dòng)目標(biāo)識別跟蹤
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(31401291),、江蘇省自然科學(xué)基金資助項(xiàng)目(BK20140729)和校級科研重點(diǎn)資助項(xiàng)目(2012ZRKX0401003)


Multiple Moving Objects Tracking Based on Panoramic Vision for Autonomous Navigation of Agricultural Vehicle
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高自主導(dǎo)航農(nóng)業(yè)車輛導(dǎo)航路徑的準(zhǔn)確性和行駛作業(yè)的安全性,提出自主導(dǎo)航農(nóng)業(yè)車輛的全景視覺多運(yùn)動(dòng)目標(biāo)識別跟蹤方案。該方案采用全景視覺進(jìn)行無盲區(qū)的多運(yùn)動(dòng)障礙目標(biāo)的檢測,,并解決了多運(yùn)動(dòng)目標(biāo)跟蹤中遮擋重疊的問題,。首先系統(tǒng)將多目相機(jī)采集的圖像拼接成全景圖像,,采用分段圖像的改進(jìn)核函數(shù)算法對運(yùn)動(dòng)目標(biāo)進(jìn)行快速自動(dòng)檢測跟蹤,;其次采用基于路徑預(yù)測的粒子濾波算法進(jìn)行多運(yùn)動(dòng)目標(biāo)跟蹤并解決遮擋重疊的問題,。通過試驗(yàn)表明:采用改進(jìn)的核函數(shù)目標(biāo)快速跟蹤算法,,與傳統(tǒng)核函數(shù)跟蹤算法相比,,減少系統(tǒng)內(nèi)存消耗66.8%,加快運(yùn)算速度35.63%,;采用基于路徑預(yù)測的粒子濾波多目標(biāo)跟蹤算法,,在多運(yùn)動(dòng)目標(biāo)遮擋重疊的情況下,平均提高運(yùn)動(dòng)目標(biāo)跟蹤成功率39.5個(gè)百分點(diǎn),,算法平均耗時(shí)0.78s,。

    Abstract:

    In order to improve the accuracy of the navigation path and satisfy the safety of driving for autonomous navigation of agricultural vehicles, a method of detecting and tracking multiple moving objects was proposed based on panoramic vision. Panoramic vision possessed the advantages of non blind area detection and the improved algorithm solved the problem of the overlap in multiple moving objects tracking. Firstly, multi-vision images were acquired to stitch panoramic images, the improved kernel function algorithm based on segmented image was used to detect and track the moving object automatically and rapidly. Secondly, the particle filter algorithm based on path prediction was used to track multiple moving objects and solved the overlap problem. Compared with the traditional kernel function algorithm, experiments showed that the memory consumption was reduced by 66.8% and the algorithm speed was increased by 35.63%. Multiple moving objects detection using the particle filter algorithm based on path prediction could take averagely 0.78s to detect moving obstacles, and the success rate of moving objects tracking was increased by 39.5 percentage points under the condition of overlap in multiple moving objects.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李盛輝,田光兆,姬長英,周 俊,顧寶興,王海青.自主導(dǎo)航農(nóng)業(yè)車輛的全景視覺多運(yùn)動(dòng)目標(biāo)識別跟蹤[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(1):1-7. Li Shenghui, Tian Guangzhao, Ji Changying, Zhou Jun, Gu Baoxing, Wang Haiqing. Multiple Moving Objects Tracking Based on Panoramic Vision for Autonomous Navigation of Agricultural Vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(1):1-7.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-10-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-01-10
  • 出版日期: 2015-01-10
文章二維碼