ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

破損花菇機器視覺檢測技術(shù)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助項目(2008BBC012)、中央高校基本科研業(yè)務(wù)費專項資金資助項目(2010JC006)和華中農(nóng)業(yè)大學(xué)優(yōu)博優(yōu)碩基金資助項目


Application of Machine Vision in Detection of Broken Shiitake
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實現(xiàn)基于機器視覺技術(shù)的破損花菇自動檢測,,研究了基于曲線演化和花菇邊緣灰度分析的破損檢測方法以及破損花菇在線檢測系統(tǒng)。去除花菇背景,,跟蹤花菇邊緣,得到花菇邊緣坐標(biāo)曲線,,對此曲線的內(nèi)外部進行曲線演化,,并計算內(nèi)外部演化曲線與原始花菇邊緣曲線接近的點的個數(shù)(Nin、Nout),,以此參數(shù)可判定花菇的破損狀況,;利用形態(tài)學(xué)腐蝕的方法對花菇邊緣進行采樣,從采樣灰度序列中提取均值(μ),、方差(ρ),、平均波峰寬度(Lp)和最大波峰寬度(Lmax)4個破損特征參數(shù),進而使用模式識別的方法分析此4個破損特征參數(shù),,得出花菇的破損狀況,。結(jié)合曲線演化和邊緣灰度分析的結(jié)果聯(lián)合判斷花菇的破損狀況。對180個花菇樣本進行測試,,得出最終破損識別率為88.33%,,檢測速度為98個/min。

    Abstract:

    In order to detect the broken shiitake, a automatic detection system of shiitake was developed based on machine vision. Identification algorithms based on curve evolution and shiitake edge grayscale were presented. First, the background of shiitake images was removed, the edge of shiitake was tracked and then the coordinates of shiitake boundary was obtained. A closed curve was composed of these coordinates. Two initial curves could be generated from the interior and exterior of the closed curve respectively. Two final curves were evolved on those two initial curves, which met the condition of specific termination criterion. Two parameters (Nin,,Nout) were extracted from the difference of final curves and initial curve. These parameters could determine the broken extent of shiitake and shiitake edge region were sampled with the method of morphology. Then four parameters could be extracted from the sequence of the gray scale of sampled regions .These parameters were mean (μ), variance (ρ), average width of peaks (Lp) and the maximum width of peaks (Lmax) respectively. The four parameters were analyzed with the method of pattern recognition and the broken extent of shiitake was obtained from the processing results. The final result was given with the results of both curve evolution and grayscale analysis. Experiments show that the accuracy of final shiitake detection model reached up to 88.33% , and the selection speed was 98 per minute.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳 紅,夏 青,左 婷,譚鶴群,邊銀丙.破損花菇機器視覺檢測技術(shù)[J].農(nóng)業(yè)機械學(xué)報,2014,45(11):60-67. Chen Hong, Xia Qing, Zuo Ting, Tan Hequn, Bian Yinbing. Application of Machine Vision in Detection of Broken Shiitake[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(11):60-67.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2013-12-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2014-11-10
  • 出版日期:
文章二維碼