ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于CUDA的并行K-means聚類圖像分割算法優(yōu)化
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(61271280)和國家級大學(xué)生科技創(chuàng)新重點資助項目(201310712068)


CUDA-based Parallel K-means Clustering Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高K-means聚類算法的運算速度,,基于CUDA架構(gòu)提出一種分塊、并行的K-means算法,,并采用“合并訪問”,、“多級規(guī)約求和”、“負(fù)載均衡”和“指令優(yōu)化”等策略優(yōu)化并行算法,。實驗結(jié)果表明,,并行K-means算法的分割效果與串行K-means算法相同,但運行速度得到了極大的提高,,加速比最高達到560,,很好地解決了農(nóng)業(yè)工程實際中由于分割算法帶來的瓶頸問題,能夠極大地提高農(nóng)業(yè)勞動生產(chǎn)率,。

    Abstract:

    K-means clustering algorithm is an excellent algorithm which has been widely used in the image processing and data mining. However, the algorithm arouses a high computational complexity. This paper made a parallel analysis of K-means algorithm in detail, and proposed a partitioning and parallel K-means algorithm based on CUDA (Compute unified device architecture). In addition, some optimization strategies, e.g., coalesced memory access, parallel reduction, load balance and instruction optimization, were discussed to obtain the higher performance. Experimental results show that the parallel K-means algorithm achieves 560x speedup over the sequential C codes, while maintains the same effect. Hence it solves the bottleneck of the algorithm perfectly, which is an attractive alternative to the sequential K-means algorithm for image segmentation and clustering analysis.

    參考文獻
    相似文獻
    引證文獻
引用本文

霍迎秋,秦仁波,邢彩燕,陳 曦,方 勇.基于CUDA的并行K-means聚類圖像分割算法優(yōu)化[J].農(nóng)業(yè)機械學(xué)報,2014,45(11):47-53. Huo Yingqiu, Qin Renbo, Xing Caiyan, Chen Xi, Fang Yong. CUDA-based Parallel K-means Clustering Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(11):47-53.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-05-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2014-11-10
  • 出版日期:
文章二維碼