ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

桃子表面缺陷分水嶺分割方法研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(31301236)、北京市博士后科研活動(dòng)經(jīng)費(fèi)資助項(xiàng)目(2013ZZ-70)和2012年北京市農(nóng)林科學(xué)院博士后基金資助項(xiàng)目


Watershed Segmentation Method for Segmenting Defects on Peach Fruit Surface
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    水果表皮缺陷的有效檢測(cè)是水果自動(dòng)化無損檢測(cè)重要的部分,并且表皮缺陷的準(zhǔn)確分割是對(duì)缺陷果準(zhǔn)確分級(jí)的前提,,也有助于缺陷果的分類識(shí)別。然而,,通常水果表面具有較大的曲率變化,這種變化的曲率導(dǎo)致水果表面對(duì)同一入射光源照度反射的不均,,進(jìn)而影響缺陷區(qū)域的準(zhǔn)確分割,。本研究以平谷大桃為例,提出采用基于形態(tài)學(xué)梯度重構(gòu)和內(nèi)外標(biāo)記的分水嶺算法對(duì)水果表面缺陷進(jìn)行分割,。首先,,提取R通道圖像,采用NIR圖像構(gòu)建掩模模板并對(duì)R通道圖像去背景,;隨后,,去除背景后的圖像進(jìn)行形態(tài)學(xué)梯度變化獲取梯度圖像,并對(duì)梯度變化后的圖像進(jìn)行梯度重建以去除水果表面的細(xì)小噪聲,;接著,,對(duì)重建后的梯度圖像進(jìn)行形態(tài)學(xué)標(biāo)記運(yùn)算獲取標(biāo)記圖像;然后,,采用標(biāo)準(zhǔn)分水嶺算法實(shí)現(xiàn)缺陷的準(zhǔn)確分割,。對(duì)正常果、刺傷果,、裂果、黑斑果,、蟲咬傷果,、腐爛果和疤傷果7種表皮類型樣本共計(jì)525幅圖像檢測(cè)結(jié)果表明,能夠獲得96.8%識(shí)別率,。實(shí)驗(yàn)證明,,基于形態(tài)學(xué)梯度重構(gòu)和標(biāo)記提取的分水嶺算法能夠有效用于桃子表面缺陷的分割,并不會(huì)受到桃子表面光照不均的影響,。

    Abstract:

    Effective detection of peel defects on fruit was always the most important in automatic non-destructive detection of fruit. And, accurate segmentation of peel defects was a premise to effectively grade the fruit based on size of defect. However, since fruit surface usually has a larger curvature change, the non-uniform reflection from fruit surface is probably caused in terms of the same incident light source, and the accurate segmentation of peel defects will be affected. ‘Pinggu’ peaches were applied as the research object, and a watershed segmentation method combining morphological gradient reconstruction with internal and external markers was proposed to segment the defects on fruit peel. First, R channel image was extracted and background was removed by mask template obtained from NIR image. Then, gradient image was obtained by morphological gradient operation, and gradient reconstruction was performed by using the gradient image to remove some small noises on the fruit surface. Next, internal and external marker operations were used to obtain the marker image. Finally, defects on peel were segmented by using the standard watershed algorithm. For the investigated 525 sample images including seven peel types, a 96.8% successful recognition rate was achieved. The experimental results showed that a watershed segmentation algorithm combining morphological gradient reconstruction with marker extraction could be effectively used to segment the peel defects on peach and the performance of algorithm was not affected by non-uniform illumination on peach surface. However, defect segmentation rate needed to be further improved.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李江波,彭彥昆,黃文倩,張保華,武繼濤.桃子表面缺陷分水嶺分割方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(8):288-293. Li Jiangbo, Peng Yankun, Huang Wenqian, Zhang Baohua, Wu Jitao. Watershed Segmentation Method for Segmenting Defects on Peach Fruit Surface[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(8):288-293.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2013-09-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2014-08-10
  • 出版日期:
文章二維碼