ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于亮度校正和AdaBoost的蘋果缺陷在線識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(31301236)、國家高技術(shù)研究發(fā)展計劃(863計劃)資助項(xiàng)目(2013AA100307)和2012年北京市農(nóng)林科學(xué)院博士后基金資助項(xiàng)目


On-line Identification of Defect on Apples Using Lightness Correction and AdaBoost Methods
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了一種基于亮度校正和AdaBoost的蘋果缺陷與果?!糃D*2〗花萼在線識別方法,。以富士蘋果為研究對象,,首先在線采集蘋果的RGB圖像和NIR圖像,,并分割NIR圖像獲得蘋果二值掩模,;其次利用亮度校正算法對R分量圖像進(jìn)行亮度校正,,并分割校正圖像獲得缺陷候選區(qū)(果梗,、花萼和缺陷),;然后以每個候選區(qū)域?yàn)檠谀?,隨機(jī)提取其內(nèi)部7個像素的信息分別代表所在候選區(qū)的特征,將7組特征送入AdaBoost分類器進(jìn)行分類、投票,,并以最終投票結(jié)果確定候選區(qū)的類別,。實(shí)驗(yàn)結(jié)果表明,該算法檢測速度為3個/s,,滿足分選設(shè)備的實(shí)時性要求,,且總體正確識別率達(dá)95.7%。

    Abstract:

    An algorithm was proposed to on-line identify the defects and stem-calyx on apples based on lightness correction method and AdaBoost classifier. The ‘Fuji’ apples were selected as the experiment object. First, the RGB images and NIR images of apples were acquired, and NIR images were binarized to obtain the mask images. Second, the R component images were corrected by using proposed lightness correction algorithm and the defect candidate regions were obtained by binarizing the corrected images with a single threshold. Third, every candidate region was treated as a mask, and the information of random seven pixels in the candidate region were selected as the characteristics of the selected candidate region. Finally, an AdaBoost classifier was used to classify these candidate regions by voting way, and the category of candidate region was determined according to the final voting results. For the investigated 140 samples, the results with a 95.7% overall detection rate under acquisition speed of three apples per second indicated that the proposed algorithm was effective.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張保華,黃文倩,李江波,趙春江,劉成良,黃丹楓.基于亮度校正和AdaBoost的蘋果缺陷在線識別[J].農(nóng)業(yè)機(jī)械學(xué)報,2014,45(6):221-226. Zhang Baohua, Huang Wenqian, Li Jiangbo, Zhao Chunjiang, Liu Chengliang, Huang Danfeng. On-line Identification of Defect on Apples Using Lightness Correction and AdaBoost Methods[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(6):221-226.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2013-05-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2014-06-10
  • 出版日期: 2014-06-10
文章二維碼