ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

貝葉斯模型在土壤轉(zhuǎn)換函數(shù)中的應(yīng)用與適應(yīng)性評(píng)價(jià)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(51069006)和內(nèi)蒙古自治區(qū)高等學(xué)校青年科技英才支持計(jì)劃資助項(xiàng)目(NJYT-12-A05)


Application and Adaptability Evaluationof Bayesian Model in Soil Transfer Functions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了研究大型灌區(qū)節(jié)水改造后的區(qū)域農(nóng)田生態(tài)環(huán)境效應(yīng)中分布式水文模型空間參數(shù)的確定問(wèn)題,通過(guò)內(nèi)蒙古河套灌區(qū)解放閘灌域22個(gè)土壤水鹽監(jiān)測(cè)點(diǎn)110個(gè)土壤樣本的采樣與分析,,利用貝葉斯神經(jīng)網(wǎng)絡(luò)(BNN)模型建立了河套灌區(qū)區(qū)域分層土壤特征參數(shù)與土壤水分特征曲線模型參數(shù),、特征含水率之間的土壤轉(zhuǎn)換函數(shù)模型,,并與已有的BP神經(jīng)網(wǎng)絡(luò)模型進(jìn)行適應(yīng)性比較及模型驗(yàn)證,。結(jié)果表明,,BP模型土壤轉(zhuǎn)換函數(shù)的訓(xùn)練模擬精度優(yōu)于BNN,,但是在模擬預(yù)測(cè)方面,,BNN模型普遍好于BP模型,而且模型輸入因子數(shù)量對(duì)BP模型的精度影響較大,,而B(niǎo)NN模型對(duì)于不同輸入因子表現(xiàn)出很好的穩(wěn)健性,,BNN模型比傳統(tǒng)的人工神經(jīng)網(wǎng)絡(luò)模型具有更好的適應(yīng)性和預(yù)測(cè)效果,體現(xiàn)了土壤特征參數(shù)的空間隨機(jī)性和結(jié)構(gòu)性特征,,而且預(yù)測(cè)的土壤水分特征曲線與實(shí)測(cè)和VG擬合結(jié)果更為接近,,是一種具有廣闊應(yīng)用前景的區(qū)域土壤轉(zhuǎn)換函數(shù)推求方法。

    Abstract:

    In order to study the spatial parameters of the distributive hydrological models among the ecological influences of regional farmland under the condition of water-saving practices in large scale irrigation district, the Bayesian neural networks and back-propagation artificial neural network models were applied to establish regional pedotransfer function models. Based on the relationship of measured soil characteristic contents, soil particle percentage, organic matter and bulk density, the adaptability of these two kinds of ANN models were evaluated through simulated and predicted values statistically, accompanied with the SWRC figures. Results indicated that the BP and BNN were both feasible PTFs methods. The training simulated accuracy of traditional BP model was better than that of BNN. However, the predicted accuracy of BNN model generally was better than the BP model. Furthermore, the predictive accuracy of BP model was significantly influenced by the number of input factor groups. But there were little influences on different input factors of BNN model. So, the BNN showed good robustness for the simple inputs. Besides, the predicted SWRC was better fitted with measured and VG fitted curve than that of ANN. Thus, the BNN model was better than the traditional artificial neural network model. It had better adaptability in the pedotransfer function establishment when only soil particle distribution was used. All showing that the BNN method was a practical method for regional pedotransfer function establishment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張 娜,屈忠義,楊 曉,付小軍.貝葉斯模型在土壤轉(zhuǎn)換函數(shù)中的應(yīng)用與適應(yīng)性評(píng)價(jià)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(2):149-155. Zhang Na, Qu Zhongyi, Yang Xiao, Fu Xiaojun. Application and Adaptability Evaluationof Bayesian Model in Soil Transfer Functions[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(2):149-155.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2013-03-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2014-02-10
  • 出版日期: 2014-02-10
文章二維碼