ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于全景視覺(jué)的智能農(nóng)業(yè)車輛運(yùn)動(dòng)障礙目標(biāo)檢測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(31071325)和江蘇省自然科學(xué)基金資助項(xiàng)目(BK2010458)


Moving Obstacle Detection Based on Panoramic Vision for Intelligent Agricultural Vehicle
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了滿足智能農(nóng)業(yè)車輛安全正常作業(yè),,提出了基于全景視覺(jué)的運(yùn)動(dòng)障礙目標(biāo)檢測(cè),。與傳統(tǒng)的單目和雙目視覺(jué)相比,,全景視覺(jué)具有360°無(wú)盲區(qū)檢測(cè)的優(yōu)點(diǎn),。首先系統(tǒng)使用多線程技術(shù)采集多目視覺(jué)圖像,,并用改進(jìn)RANSAC-SIFT算法進(jìn)行特征點(diǎn)提取與匹配,,進(jìn)而拼接全景視覺(jué)圖像,;其次采用改進(jìn)的CLG光流法處理全景圖像,,檢測(cè)運(yùn)動(dòng)障礙目標(biāo),。試驗(yàn)表明:基于多線程技術(shù)和改進(jìn)RANSAC-SIFT的全景拼接算法,,與傳統(tǒng)SIFT算法相比,平均提高特征點(diǎn)匹配準(zhǔn)確度25.6%,,加快運(yùn)算速度25.0%,;采用改進(jìn)CLG光流法進(jìn)行運(yùn)動(dòng)障礙檢測(cè),平均檢測(cè)時(shí)間為1.55 s,,檢測(cè)成功率為95.0%,。

    Abstract:

    In order to satisfy the safety and normal operation for intelligent agricultural vehicle, a method of detecting moving obstacles was proposed based on panoramic vision. Compared with the traditional monocular and binocular vision, panoramic vision possessed the advantages of 360° non-blind area detection. Firstly, multi-thread technology was used to acquire multi-vision images. The improved RANSAC-SIFT algorithm was used to extract and match feature points, and then stitch panoramic images. Secondly, improved CLG optical flow algorithm was used to detect moving obstacles based on panoramic images. Compared with the traditional SIFT algorithm , experiments showed that the accuracy of feature points matching was increased by 25.6% and the arithmetic speed was increased by 25.0%. Moving obstacle detection using improved CLG optical flow algorithm could take averagely 1.55 s to detect moving obstacles, and the accuracy was 95.0%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李盛輝,周俊,姬長(zhǎng)英,田光兆,顧寶興,王海青.基于全景視覺(jué)的智能農(nóng)業(yè)車輛運(yùn)動(dòng)障礙目標(biāo)檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(12):239-244. Li Shenghui, Zhou Jun, Ji Changying, Tian Guangzhao, Gu Baoxing, Wang Haiqing. Moving Obstacle Detection Based on Panoramic Vision for Intelligent Agricultural Vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(12):239-244.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-12-05
  • 出版日期:
文章二維碼