ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于核磁共振成像技術(shù)的香梨褐變檢測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(31201137)、國家高技術(shù)研究發(fā)展計劃(863計劃)資助項目(2011AA100705),、農(nóng)業(yè)科技成果轉(zhuǎn)化資金資助項目(2011GB23600008)、國家公益性農(nóng)業(yè)專項資助項目(200903044)和中央高?;究蒲袠I(yè)務(wù)費專項資金資助項目


Browning Detection of Fragrant Pear Using Magnetic Resonance Imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    將核磁共振成像技術(shù)與人工神經(jīng)網(wǎng)絡(luò)理論相結(jié)合,,對香梨內(nèi)部褐變進(jìn)行了檢測。在磁共振T2加權(quán)圖像中選取果核區(qū)域作為感興趣區(qū)域,,提取出反映褐變特性的10個微觀紋理特征參數(shù),,建立了BP神經(jīng)網(wǎng)絡(luò)模型進(jìn)行識別研究。針對BP神經(jīng)網(wǎng)絡(luò)模型存在的不足,,利用遺傳算法對網(wǎng)絡(luò)模型的權(quán)值和閾值進(jìn)行優(yōu)化,。通過驗證性試驗發(fā)現(xiàn):對于4組香梨樣本,優(yōu)化后BP神經(jīng)網(wǎng)絡(luò)模型的平均正確識別率為92.50%,比未優(yōu)化模型的平均正確識別率80.83%,,提高了11.67個百分點,;同一組香梨樣本相比較,優(yōu)化后模型的識別效果也均優(yōu)于未優(yōu)化模型,,每組香梨的識別率都得到了不同程度的提高,。結(jié)果表明:遺傳算法優(yōu)化后的BP神經(jīng)網(wǎng)絡(luò)模型具有很好的預(yù)測精度和泛化能力,可以實現(xiàn)香梨內(nèi)部褐變的無損檢測,。

    Abstract:

    Magnetic resonance imaging (MRI) technology and artificial neural network theory were used to discriminate the browning disease inside the fruit. Areas corresponding to the core of fragrant pear in T2-weighted image were selected to the region of interest (ROI). Quantitative analysis of the ROI was achieved by extracting ten texture features that reflected the browning characteristics. Back propagation (BP) neural network was carried out on the statistical features to predict the internal browning of fragrant pear. Genetic algorithm (GA) was adopted to optimize the initial weights and threshold in BP neural network. For four groups of samples, the optimization model showed 92.50% accuracy in detecting the presence of browning in fragrant pear, compared with the correct recognition rate 80.83% of the non-optimization, an 11.67 percent increased. For the same group samples, the recognition results of optimized model were also better than the non-optimized model and the correct recognition rate of each group was improved to varying degrees. The result of our experiment shows that the optimized model has good predictive accuracy and generalization ability to identify the internal browning of fragrant pear. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張建鋒,何勇,龔向陽,劉飛.基于核磁共振成像技術(shù)的香梨褐變檢測[J].農(nóng)業(yè)機(jī)械學(xué)報,2013,44(12):169-173,147. Zhang Jianfeng, He Yong, Gong Xiangyang,Liu Fei. Browning Detection of Fragrant Pear Using Magnetic Resonance Imaging[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(12):169-173,147.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-12-05
  • 出版日期:
文章二維碼