ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

波譜成像技術(shù)在作物病害信息早期檢測中的研究進(jìn)展
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2013AA102301);國家自然科學(xué)基金資助項(xiàng)目(31201137)


Research Development of Spectral Imaging Technology in Early Detection of Botanical Diseases
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    闡述了波譜成像技術(shù)在作物病害信息早期檢測方面的研究進(jìn)展。作物病害是制約農(nóng)業(yè)生產(chǎn)穩(wěn)定發(fā)展的重要因素,。實(shí)時,、靈敏,、可靠的作物病害檢測和防治是進(jìn)行科學(xué)的作物生產(chǎn)管理的基礎(chǔ),。利用多光譜圖像,、高光譜圖像,、熱紅外圖像等波譜成像技術(shù),結(jié)合作物病理學(xué)以及化學(xué)計(jì)量學(xué)的方法,,對感病植株進(jìn)行早期檢測,建立能準(zhǔn)確反映作物病害的檢測模型和病害程度的定量描述模型,,對提高作物抗病機(jī)制的研究,,科學(xué)指導(dǎo)作物生產(chǎn)具有重要的意義。

    Abstract:

    The research achievements of spectral imaging technology in early detection of botanical diseases were briefly summarized. The plant disease is an important factor that restricts the steady development of agriculture. It is fundamental to botanical production and management to utilize real-time, sensitive, stable detection and prevention methods. Combined multi-spectral images, hyperspectral images, infrared thermal images with plant pathology as well as chemometrics, infected plants can be detected in early stage by spectral imaging technology. It is very meaningful to build a quantitative model that can reflect botanical diseases and its extent precisely.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馮雷,高吉興,何勇,劉飛.波譜成像技術(shù)在作物病害信息早期檢測中的研究進(jìn)展[J].農(nóng)業(yè)機(jī)械學(xué)報,2013,44(9):169-176. Feng Lei, Gao Jixing, He Yong, Liu Fei. Research Development of Spectral Imaging Technology in Early Detection of Botanical Diseases[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(9):169-176.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-09-11
  • 出版日期:
文章二維碼