ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于模糊最優(yōu)小波包的植物脅迫因子識(shí)別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2012AA101904),、江蘇省農(nóng)機(jī)三項(xiàng)工程資助項(xiàng)目(NJ2010)和江蘇省農(nóng)機(jī)局科研啟動(dòng)基金資助項(xiàng)目(06007)


Plant Stress Recognition Based on Fuzzy-rule Using Optimal Wavelet Packet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了正確地識(shí)別植物常見(jiàn)的脅迫種類(lèi),以采集的正常狀態(tài)和7種脅迫下的植物電信號(hào)為樣本,,結(jié)合小波包分解提取特征值能力強(qiáng)的優(yōu)點(diǎn),,應(yīng)用模糊準(zhǔn)則來(lái)優(yōu)化小波包分解,,提取植物電信號(hào)中的最優(yōu)小波包基能量值構(gòu)成特征集,,應(yīng)用更適合處理模糊的,、非線性信號(hào)的BP神經(jīng)網(wǎng)絡(luò)作為分類(lèi)器,,以實(shí)現(xiàn)對(duì)不同逆境因子類(lèi)型的識(shí)別。首先利用小波包對(duì)采集的植物電信號(hào)進(jìn)行降噪預(yù)處理,,然后列舉了樣本經(jīng)基于模糊準(zhǔn)則的小波包處理后各小波包基上的能量樣本值,繪制了特征分布圖,,最后通過(guò)對(duì)蘆薈,、碧玉、虎皮蘭和蟹爪蘭4種植物所處7種脅迫的判斷,,以統(tǒng)計(jì)特征值作為對(duì)照,,采用所提方法脅迫平均識(shí)別率達(dá)到9595%,驗(yàn)證了此方法的準(zhǔn)確性和可行性,。

    Abstract:

    In order to correctly identify common stress types of plants, because the wavelet packet has superior ability in feature extraction, the way to optimize the wavelet packet decomposition by use of the fuzzy criterion was proposed. Then BP neural network classifier should be employed to distinguish different stress factors according to physical characteristics of electrical signals performed by plants under diverse stress factors. Because plant electrical signals are very weak, de-noising method based on wavelet packet was used. Afterwards, after wavelet packet was optimized by fuzzy criterion to acquire the feature sets composed of optimal wavelet packet base energy values which can be differentiated easily, electrical signals from plants exposed to a variety of stress types were decomposed by using wavelet packet. In the end, the feature sets were input to a certain BP neural network which is more suited for processing fuzzy and nonlinear signals to finally identify stress types. The results of the study showed that average rate reached to 95.95%. This proposal was proved to be relatively precise and practical after the analysis of four plants including aloe, Jasper, Sansevieria and Schlumbergera, all of which were exposed to seven kinds of detrimental factors. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陸靜霞,丁為民,於海明,凌威龍.基于模糊最優(yōu)小波包的植物脅迫因子識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(12):217-221,228. Lu Jingxia, Ding Weimin, Yu Haiming, Ling Weilong. Plant Stress Recognition Based on Fuzzy-rule Using Optimal Wavelet Packet[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(12):217-221,228.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2012-12-13
  • 出版日期:
文章二維碼