ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于近紅外圖像的溫室小型西瓜采摘信息獲取技術(shù)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

“十二五”國(guó)家科技支撐計(jì)劃資助項(xiàng)目(2011BAD20B07);國(guó)家自然科學(xué)基金資助項(xiàng)目(31071320);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金資助項(xiàng)目(20090008110007)


Information Acquisition Technique of Mini-watermelon for Harvesting Based on Near-infrared Image in Greenhouse
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)溫室立體栽培模式下小型西瓜的識(shí)別與空間定位,研究了基于近紅外圖像的西瓜采摘信息獲取方法。測(cè)定、比較西瓜果實(shí)與莖、葉的光譜反射率,確定波長(zhǎng)850nm附近波段為區(qū)分西瓜與背景的最佳波段,在光強(qiáng)差異較大的兩時(shí)段內(nèi)采集了最佳波段下的西瓜近紅外圖像;通過(guò)Otsu算法濾除背景信息,利用“米”字型模板檢測(cè)得到“濃縮西瓜”區(qū)域,實(shí)現(xiàn)西瓜果實(shí)識(shí)別;使用形心坐標(biāo)計(jì)算公式獲得采摘點(diǎn)坐標(biāo);根據(jù)西瓜果梗生長(zhǎng)特性,利用分塊定位算法獲得切割點(diǎn)坐標(biāo)信息。在溫室環(huán)境下隨機(jī)選擇拍攝50幅有西瓜圖像和20幅無(wú)西瓜圖像進(jìn)行識(shí)別算法驗(yàn)證,并對(duì)識(shí)別成功的有西瓜圖像進(jìn)行采摘點(diǎn)與切割點(diǎn)提取算法驗(yàn)證。結(jié)果表明,有西瓜圖像識(shí)別成功率為86%,無(wú)西瓜圖像為95%;采摘點(diǎn)、切割點(diǎn)定位準(zhǔn)確度分別為93.0%、88.4%。

    Abstract:

    In order to realize the recognition and localization of the mini-watermelon with stereoscopic cultivation in greenhouse, a machine vision method for acquiring harvesting information of watermelon based on the near-infrared spectral image was presented. By comparing the spectral reflectance of fruit, leaf and stem, a wavelength of about 850nm was chosen as the best wavelength, of which the images taken at different illumination conditions were tested for fruit recognition. At first, the Otsu threshold algorithm was adopted to eliminate most background information. Then, a template liked circle was used to detect fruit region and reduce the noises. Thirdly, according to the morphological feature, the centroid of fruit was considered as the optimum point for picking and the cutting point was judged by “block-location method”. 50 images including fruits and 20 images without fruits were tested by the recognition algorithm, which can satisfactorily detect fruit with a recognition rate of 86% and 95%, respectively, and the accuracy rate of locating algorithm for picking point and cutting point detection was 93.0% and 88.4%, respectively, which met the demand of robotic vision system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

袁挺,紀(jì)超,張震華,張俊雄,譚豫之,李偉.基于近紅外圖像的溫室小型西瓜采摘信息獲取技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(7):174-178,155. Yuan Ting, Ji Chao, Zhang Zhenhua, Zhang Junxiong, Tan Yuzhi, Li Wei. Information Acquisition Technique of Mini-watermelon for Harvesting Based on Near-infrared Image in Greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(7):174-178,155.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2012-07-02
  • 出版日期:
文章二維碼