ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于機器視覺的蘋果分級中特征參量選擇方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

河南省科技創(chuàng)新杰出青年資助項目(624420017)


Feature Selection Method for Apple Grading Based on Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高基于數(shù)字圖像的蘋果分級的準確性,,常提取多特征信息,。然而,,使用多特征信息分級時會存在信息冗余等問題,。為此,,運用主成分分析(PCA)來融合特征參量,,并借助Wilks Λ統(tǒng)計量選擇對分級有顯著作用的主成分,;然后依據(jù)各特征參量對所選擇主成分的貢獻率篩選特征參量。Fisher判別分析(FDA)結(jié)果表明:使用所選擇的特征參量進行蘋果分級,,分級效果明顯優(yōu)于特征選擇前,分級正確率和交叉驗證正確率分別提高了2.0%和1.5%,。

    Abstract:

    In order to improve the accuracy of apple grading in digital image processing system, the multi-feature information was extracted for describing the apple features. However, this method may result in information redundancy and so on. So, the principal component analysis (PCA) was used to carry out information fusion of the feature parameters, and with the aid of Wilks Λ statistic the principal components (PC) which could promote grading results were selected. Then some features used in grading were selected based on the contribution rate to selected PC. The results of Fisher discriminate analysis (FDA) showed that the grading effect corresponding to the selected features was better than that of all features, and the grading accuracy and the cross-validation accuracy rose by 2.0% and 1.5%, respectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

殷勇,陶凱,于慧春.基于機器視覺的蘋果分級中特征參量選擇方法[J].農(nóng)業(yè)機械學報,2012,43(6):118-121,127. Yin Yong, Tao Kai, Yu Huichun. Feature Selection Method for Apple Grading Based on Machine Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(6):118-121,127.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2012-06-19
  • 出版日期:
文章二維碼