ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于粒子群尋優(yōu)的支持向量機(jī)番茄紅素含量預(yù)測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(30972036)


Lycopene Content Prediction Based on Support Vector Machine with Particle Swarm Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    應(yīng)用支持向量機(jī)(SVM)通過色差值對番茄果實(shí)番茄紅素含量預(yù)測進(jìn)行建模,,解決預(yù)測過程受影響因素多,、參數(shù)互相關(guān)聯(lián),、難以建立精確模型問題,。為提高預(yù)測精度,,將SVM參數(shù)選擇和輸入變量的選取看作組合優(yōu)化問題,,通過赤池信息準(zhǔn)則(AIC)構(gòu)造組合目標(biāo)優(yōu)化函數(shù),,采用粒子群算法(PSO)進(jìn)行目標(biāo)函數(shù)搜索,,提高了搜索效率,。對采后儲藏不同成熟度番茄進(jìn)行的測量表明,所提預(yù)測建模算法在番茄紅素的預(yù)測中具有良好的性能,,為番茄紅素的便捷,、無破壞性測量提供了一種方法。

    Abstract:

    Color-difference was presented to assess the lycopene content conveniently and non-destructively. Due to excessive affecting factors and strong correlation among the parameters in the process, the support vector machine (SVM) was used to set up the predict model. The selection and simplification of the feature parameters was discussed. A compound optimal objective function based on Akaike information criterion (AIC) was constructed. The particle swarm optimization (PSO) algorithm was used to search the optimal value of the objective function and enhance the efficiency. The predictable method had good performance in assessing the lycopene content of different maturity stages.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉偉,王建平,劉長虹,應(yīng)鐵進(jìn).基于粒子群尋優(yōu)的支持向量機(jī)番茄紅素含量預(yù)測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(4):143-147,155. Liu Wei,Wang Jianping, Liu Changhong,Ying Tiejin. Lycopene Content Prediction Based on Support Vector Machine with Particle Swarm Optimization[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(4):143-147,155.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2012-04-18
  • 出版日期:
文章二維碼