ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

挖掘臂電液伺服系統(tǒng)非線性辨識
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(50875261)


Nonlinear Identification of Excavator Arm’s Electro-hydraulic Servo System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對機理建模存在未建模動態(tài)及其參數(shù)辨識難的問題,,采用由分段非線性模塊,、線性時不變動態(tài)模塊及間隙非線性模塊串聯(lián)組成的Pseudo-Hammerstein-Wiener模型來描述挖掘臂電液伺服系統(tǒng),。利用關(guān)鍵變量分離原理將系統(tǒng)模型化解為最小二乘格式,再采用帶中間變量估計的改進(jìn)遞推最小二乘算法進(jìn)行辨識,。實驗表明,辨識所得Pseudo-Hammerstein-Wiener模型能很好地逼近實際系統(tǒng),,誤差比Hammerstein及線性模型分別減少29%及68%,。

    Abstract:

    Aiming at the problem that there are unmodeled dynamics by theoretic modeling and it is also difficult to identify, a Pseudo-Hammerstein-Wiener model with cascade connection of a two-segment polynomial nonlinearity block, a time-invariant linear system, and a backlash nonlinear term was adopted to model the electro-hydraulic servo system of excavator arm. The key term separation principle was used to decompose the model into a linear-in-parameter format, and a refined recursive least square method supplemented with the estimation of internal variables was proposed to identify the decomposed parameters. Experiments demonstrated that the identified Pseudo-Hammerstein-Wiener model approximated the actual system well. Comparing with Hammerstein and ARX model, the error of the Pseudo-Hammerstein-Wiener was reduced by 29% and 68%, respectively. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黎波,嚴(yán)駿,劉安心,曾擁華,郭剛.挖掘臂電液伺服系統(tǒng)非線性辨識[J].農(nóng)業(yè)機械學(xué)報,2012,43(4):20-25,131. Li Bo, Yan Jun, Liu Anxin, Zeng Yonghua, Guo Gang. Nonlinear Identification of Excavator Arm’s Electro-hydraulic Servo System[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(4):20-25,131.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2012-04-18
  • 出版日期:
文章二維碼