ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于BP神經(jīng)網(wǎng)絡(luò)的農(nóng)機(jī)總動(dòng)力預(yù)測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(31071331)和黑龍江省教育廳科學(xué)技術(shù)研究資助項(xiàng)目(12511049)


Prediction of Total Power in Agriculture Machinery Based on BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    分析了BP神經(jīng)網(wǎng)絡(luò)用于預(yù)測(cè)時(shí)存在的不足,進(jìn)而對(duì)基于BP神經(jīng)網(wǎng)絡(luò)的時(shí)間序列的預(yù)測(cè)問(wèn)題進(jìn)行了探討,。根據(jù)BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的特點(diǎn),,依據(jù)Z變換理論,,提出了這一類預(yù)測(cè)問(wèn)題可選用y=x作為傳遞函數(shù),,并分析指出了在BP神經(jīng)網(wǎng)絡(luò)中,,以y=x作為傳遞函數(shù)與y=a+bx作為傳遞函數(shù)等價(jià)的結(jié)論,,同時(shí)指出了網(wǎng)絡(luò)結(jié)構(gòu)應(yīng)為兩層網(wǎng)絡(luò),。在此基礎(chǔ)上,,推導(dǎo)了相應(yīng)的計(jì)算公式,,并分別以單極性S型函數(shù)和y=x作為傳遞函數(shù),對(duì)于具有增長(zhǎng)趨勢(shì)的農(nóng)機(jī)總動(dòng)力預(yù)測(cè)問(wèn)題進(jìn)行了實(shí)例計(jì)算,。計(jì)算結(jié)果表明,,以y=x作為傳遞函數(shù)的BP神經(jīng)網(wǎng)絡(luò)在外推效果、訓(xùn)練樣本的數(shù)據(jù)處理區(qū)間影響方面明顯優(yōu)于S型傳遞函數(shù)的BP神經(jīng)網(wǎng)絡(luò),,并且克服了S型傳遞函數(shù)的BP神經(jīng)網(wǎng)絡(luò)在預(yù)測(cè)問(wèn)題中存在的不足,。

    Abstract:

    Based on analysis of the deficiencies of the BP neural network used in prediction, the time series prediction based on BP neural network was discussed. According to the characteristics of BP network structure and Z transform theory, function y=x was put forward to be the transfer function in this kind of prediction. Besides, the conclusion that function y=x and y=a+bx were equivalent in the BP network was proposed. It was pointed out that the layer of network structure should be two. On basis of this, the corresponding formula was derived. With the unipolar Sfunction and function y=x as the transfer function respectively, the total power of agriculture machinery was calculated. The results showed that the performance of function y=x in BP neural network was better than Stransfer function in external push effect and influences of training sample data processing interval. It also overcame the shortcomings of Sfunction used in BP neural network. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王吉權(quán),王福林,邱立春.基于BP神經(jīng)網(wǎng)絡(luò)的農(nóng)機(jī)總動(dòng)力預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(12):121-126. Wang Jiquan,Wang Fulin, Qiu Lichun. Prediction of Total Power in Agriculture Machinery Based on BP Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(12):121-126.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2011-12-19
  • 出版日期:
文章二維碼