ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于計算機視覺的蘋果生長姿態(tài)估算多方法融合
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家高技術研究發(fā)展計劃(863計劃)資助項目(2006AA10Z259)


Estimation Method of Apple Growing Attitude Based on Computer Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了避免機械手在采摘過程中因缺少蘋果生長姿態(tài)信息造成對蘋果和枝干的損傷,提出了一種蘋果生長姿態(tài)估算方法。利用紋理和顏色特征兩步法實現(xiàn)背景分離后,,采用鏈碼跟蹤法獲得輪廓,;闡述了二階中心矩法、最短距離法、斜率方差法和三點一線法4種蘋果姿態(tài)識別方法,并比較了4種方法的識別率。為了提高姿態(tài)的識別率,,綜合4種方法進行決策融合,識別蘋果姿態(tài),。研究結果表明,,基于4種方法的融合決策識別蘋果的正確率高于單獨使用任何一種方法,正確率達到了90%,。

    Abstract:

    In order to avoid damaging apples and branches caused by manipulator during the picking operation, for the absence of attitude information, an apple’s attitude estimation method was put forward. After the apple object was segmented from background with the two-step algorithm based on the characters of color and texture, the freeman chain code algorithm was used to extract one-pixel fruit contour. Then least distance method, least slope variance method and three collinear points’ method were given, and the recognition rates of three methods were compared. At last, for the purpose of improving recognition rate, decision method based on fusion of four methods was proposed. The research results showed that the recognition rates by using four methods were higher than using any one of methods separately, and the right recognition rate could reach to 90%.

    參考文獻
    相似文獻
    引證文獻
引用本文

謝忠紅,徐瑩,姬長英,郭小清,朱淑鑫.基于計算機視覺的蘋果生長姿態(tài)估算多方法融合[J].農業(yè)機械學報,2011,42(11):154-157. Xie Zhonghong, Xu Ying, Ji Changying, Guo Xiaoqing, Zhu Shuxin. Estimation Method of Apple Growing Attitude Based on Computer Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(11):154-157.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼