ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

農(nóng)用機器人轉(zhuǎn)向系統(tǒng)自適應內(nèi)??刂?/div>
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

安徽省國際科技合作計劃資助項目(10080703029),、安徽農(nóng)業(yè)大學引進和穩(wěn)定人才基金資助項目和安徽省教育廳自然科學研究資助項目(KJ2007B080)


Adaptive Internal Model Control for Agricultural Robot Steering System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對農(nóng)用機器人轉(zhuǎn)向系統(tǒng)狀態(tài)和控制具有復雜,、時滯和增益時變的特性,,將Adaline神經(jīng)網(wǎng)絡(ANN)與內(nèi)??刂葡嘟Y(jié)合,,提出一種在線調(diào)整時滯時間和控制增益的自適應控制方法,。建立基于Adaline網(wǎng)絡的增益與時滯的辨識算法,即通過反饋誤差在線優(yōu)化,,適應性地調(diào)整時滯時間和增益,,克服參數(shù)時變對內(nèi)模控制和被控對象模型的影響,。仿真和試驗結(jié)果表明,與常規(guī)的PID控制方法相比,該方法具有較高的控制精度,、較強的自適應性和魯棒性,完全適用于農(nóng)用機器人轉(zhuǎn)向系統(tǒng)的控制。

    Abstract:

    Aiming at the characteristics of complex, time-delay and gain time-variation of agricultural robot steering system, the Adaline neural network (ANN) was applied to internal model control (IMC). An adaptive- control method for time-delay online adjusting and gain control was proposed. An algorithm based on Adaline neural networks could adjust time-delay and gain adaptively, and overcome effects of time-variation parameters on IMC and plant model by online optimizing feedback error. Simulations and experimental results verified that compared to conventional PID control method, the proposed control method possessed the advantage of high precision, great adaptability and robustness, so it is feasible for agricultural robot steering system.

    參考文獻
    相似文獻
    引證文獻
引用本文

焦俊,江朝暉,金瑞春,許正榮,劉波.農(nóng)用機器人轉(zhuǎn)向系統(tǒng)自適應內(nèi)??刂芠J].農(nóng)業(yè)機械學報,2011,42(10):186-191,234. Jiao Jun, Jiang Chaohui,Jin Ruichun,Xu Zhengrong, Liu Bo. Adaptive Internal Model Control for Agricultural Robot Steering System[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(10):186-191,234.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼