ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進BP神經(jīng)網(wǎng)絡(luò)的排種器充種性能預測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Performance of Seed-filling Process Based on Improved BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    充種性能直接影響排種器排種質(zhì)量,,應用Matlab神經(jīng)網(wǎng)絡(luò)工具箱建立了排種器充種單粒率η1和空穴率η2的改進BP神經(jīng)網(wǎng)絡(luò)預測模型,。選取轉(zhuǎn)速n,、種子當量直徑d,、充種角β和型孔直徑D作為試驗因素進行充種性能試驗,獲得64組單粒率和空穴率的試驗結(jié)果,。選取55組結(jié)果作為訓練樣本,,采用Levenberg-Marquardt訓練方法對建立的網(wǎng)絡(luò)進行訓練,并選取剩余的9組結(jié)果對訓練好的網(wǎng)絡(luò)進行仿真預測,。其中,n,、d,、β和D為網(wǎng)絡(luò)的輸入層,η1和η2為網(wǎng)絡(luò)的輸出層,,網(wǎng)絡(luò)結(jié)構(gòu)為含有單隱層的4-15-2型3層網(wǎng)絡(luò),。預測結(jié)果表明:預測值與試驗值有較好的一致性,利用改進BP神經(jīng)網(wǎng)絡(luò)對排種器充種性能進行預測是可行的,,可為排種器的優(yōu)化設(shè)計及工作參數(shù)的選擇提供依據(jù),,從而減少試驗時間和成本。

    Abstract:

    Performance during the seed-filling process directly impacted the seed quality of the metering device. The improved BP neural network prediction model was a metering device that filled at a single-grain rate η1 and the miss rates η2 was established using the Matlab neural network toolbox. The speed n, seed equivalent diameter d, seed-filling angle β and type hole diameter D were selected as the test factors, the test was carried out on 64 groups to determine the single-particle and miss rate. 55 groups were selected from the test as training samples. The Levenberg-Marquardt training method was used to train the establishment of a network. The remaining 9 groups were selected to simulate and predict the trained and improved BP neural network. n, d, β and D were set as the network’s input layers, η1 and η2 were set as the network’s output layers, the network structure was the 4-15-2 type three-layer network containing a single hidden layer. Predicted results showed that predicted values and experimental values were almost same, the predicted performance of seed-filling with the improved BP neural network method was feasible, the method can be used to optimize metering device design and provide a basis for the selection of working parameters, in addition to reducing test time and cost. 

    參考文獻
    相似文獻
    引證文獻
引用本文

王沖,宋建農(nóng),王繼承,劉彩玲,李永磊,董向前.基于改進BP神經(jīng)網(wǎng)絡(luò)的排種器充種性能預測[J].農(nóng)業(yè)機械學報,2010,41(Z1):64-67. Performance of Seed-filling Process Based on Improved BP Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(Z1):64-67.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼