ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于神經(jīng)網(wǎng)絡(luò)的離心泵能量性能預(yù)測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:


Energy Characteristics Prediction of Centrifugal Pumps Based on Artificial Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    總結(jié)了BP網(wǎng)絡(luò)和RBF網(wǎng)絡(luò)在離心泵能量性能預(yù)測(cè)中的應(yīng)用現(xiàn)狀,介紹了這兩種網(wǎng)絡(luò)的結(jié)構(gòu)及特點(diǎn),。分別采用BP網(wǎng)絡(luò)和RBF網(wǎng)絡(luò)建立了離心泵能量性能預(yù)測(cè)模型,。用57組數(shù)據(jù)對(duì)這兩個(gè)預(yù)測(cè)模型進(jìn)行了訓(xùn)練,,并用6組數(shù)據(jù)對(duì)兩種網(wǎng)絡(luò)結(jié)構(gòu)的性能預(yù)測(cè)模型進(jìn)行了仿真,。研究結(jié)果表面:兩種網(wǎng)絡(luò)結(jié)果的預(yù)測(cè)模型預(yù)測(cè)精度比較接近且預(yù)測(cè)結(jié)果的趨勢(shì)也相同,,BP網(wǎng)絡(luò)預(yù)測(cè)精度略高于RBF網(wǎng)絡(luò),;BP網(wǎng)絡(luò)揚(yáng)程平均預(yù)測(cè)誤差為3.85%,,效率平均預(yù)測(cè)誤差為1.39%,RBF網(wǎng)絡(luò)揚(yáng)程平均預(yù)測(cè)誤差為4.79%,,效率平均預(yù)測(cè)誤差為3.43%,;RBF網(wǎng)絡(luò)預(yù)測(cè)所需時(shí)間僅為BP網(wǎng)絡(luò)預(yù)測(cè)所需時(shí)間的一半。

    Abstract:

    The application of the BP and RBF artificial neural networks in energy characteristics prediction of centrifugal pumps was summarized. The structure and characteristics of the two artificial neural networks were introduced in detail. The models of BP and RBF artificial neural network were established respectively to predict the centrifugal pump energy characteristics. The characteristics data of 57 centrifugal pumps were used to train the two models, and the data of the other 6 centrifugal pumps were used to test the two models. The study shows that the prediction results of the two networks are closer and the trends of prediction results are the same for the two networks. The precision of BP network is a little higher than that of RBF network. The head average prediction discrepancy for BP network is 3.85% and the efficiency average discrepancy is 1.39% points. The head average prediction discrepancy for RBF network is 4.79% and the efficiency average discrepancy is 3.43% points. The prediction time of RBF network is only half the time of BP network.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

談明高,劉厚林,袁壽其,王勇,王凱.基于神經(jīng)網(wǎng)絡(luò)的離心泵能量性能預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(11):52-56. Energy Characteristics Prediction of Centrifugal Pumps Based on Artificial Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(11):52-56.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼