ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

黃瓜蚜蟲的圖像識別與計數(shù)方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Image Recognition and Counting for Glasshouse Aphis gossypii
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    通過分析蚜蟲區(qū)域、綠色背景和蚜葉區(qū)的G分量特點,,建立G分量閾值確定原則,,并采用G分量閾值將蚜蟲區(qū)域和非蚜蟲區(qū)域分離開。針對蚜蟲的粘連重疊問題,,利用擴展極小值閾值變換的方法對輸入圖像進行標記,對標記后的圖像進行距離變換和分水嶺分割,,以去除粘連,。試驗結果表明:算法能有效地分割粘連重疊的蚜蟲,過分割率與欠分割率之和為3.14%,。計數(shù)準確率達到96.2%,,高于直接計數(shù)的

    Abstract:

    80.7%。Characteristics of the Aphis gossypii area, background and mixed area (include Aphis gossypii area and background) were analyzed and principle of determining was establish based on the threshold G component. Then Aphis gossypii area and non-Aphis gossypii area were separated using the threshold G component. For the overlapping Aphis gossypii, the input image were marked using the minimum extension transform, then distance transform and watershed algorithm was applied to the marked image, and the overlapping was removed. Experimental results showed that this algorithm could effectively segment the overlapping Aphis gossypii. The sum of over-segmentation rate and under-segmentation rate was 3.14%. The accurate rate was 96.2%, which was higher than the direct counting.

    參考文獻
    相似文獻
    引證文獻
引用本文

邱白晶,王天波,李娟娟,李坤.黃瓜蚜蟲的圖像識別與計數(shù)方法[J].農(nóng)業(yè)機械學報,2010,41(8):151-155.Image Recognition and Counting for Glasshouse Aphis gossypii[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(8):151-155.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼