ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于神經(jīng)網(wǎng)絡的車輛排氣噪聲聲音品質(zhì)預測技術
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Prediction of Vehicle Exhaust Noise Based on Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    通過評審團成對比較法測試得到18種車輛排氣噪聲的滿意度評價,,考察并選取響度、尖銳度,、粗糙度,、波動度和峭度作為描述車輛排氣噪聲聲音品質(zhì)的客觀心理聲學參數(shù),使用BP神經(jīng)網(wǎng)絡理論建立車輛排氣噪聲聲音品質(zhì)神經(jīng)網(wǎng)絡預測模型,,對排氣噪聲樣本的滿意度進行預測,,并與使用多元線性回歸模型所得的預測值進行了比較。結(jié)果表明,,神經(jīng)網(wǎng)絡模型預測值更接近實測值,,誤差在10%范圍以內(nèi),對于單一噪聲樣本滿意度的預測精度高于多元線性回歸模型,,能夠更好地反映客觀參數(shù)和主觀滿意度間的非線性關系,,可用于車輛排氣噪聲聲音品質(zhì)的預測研究。

    Abstract:

    Sensory pleasantness evaluation of eighteen vehicle exhaust noises were obtained by paired comparison jury test. Loudness, sharpness, roughness, fluctuation strength and kurtosis were selected for objectively characterizing the sound quality of exhaust noise. The sound quality prediction model of vehicle exhaust noise was established based on back-propagation neural network. Sensory pleasantness of exhaust noise samples were obtained through the prediction model and the results were compared with that obtained through multiple linear regression prediction model. The result showed that the prediction values were close to the measured values, the neural network model was more effective than multiple linear regression model in prediction of individual exhaust noise. The neural network prediction model represented the nonlinear relation between sensory pleasantness and objective parameters exactly and could be used for predicting the sound quality of vehicle exhaust noise.

    參考文獻
    相似文獻
    引證文獻
引用本文

石巖,舒歌群,畢鳳榮,劉海.基于神經(jīng)網(wǎng)絡的車輛排氣噪聲聲音品質(zhì)預測技術[J].農(nóng)業(yè)機械學報,2010,41(8):16-19. Prediction of Vehicle Exhaust Noise Based on Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(8):16-19.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼