ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

粘連玉米籽粒圖像的自動(dòng)分割方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:


of Touching Corn Kernels in Digital Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    以玉米籽粒為對(duì)象,,提出了一種基于公共區(qū)域和籽粒輪廓尋找分割點(diǎn)的方法,,實(shí)現(xiàn)了粘連玉米籽粒圖像的自動(dòng)分割,。對(duì)于兩個(gè)相互粘連的籽粒,,在對(duì)粘連目標(biāo)進(jìn)行連續(xù)腐蝕—膨脹處理過程中,,相互接觸籽粒會(huì)形成公共區(qū)域,,將公共區(qū)域與任意一個(gè)籽粒輪廓進(jìn)行交集運(yùn)算后,得到一段不封閉的曲線,,曲線段的端點(diǎn)作為分割點(diǎn),,再運(yùn)用Bresenham畫線算法生成分割線,將這兩個(gè)籽粒分離,。對(duì)于大量粘連的籽粒,,采用同樣的方法,以“剝離”方式可將籽粒逐個(gè)分離出來,。對(duì)100組粘連籽粒圖像進(jìn)行算法測(cè)試,,分割正確率為96%,分割后的籽粒邊界較為平滑,,變形較小,。

    Abstract:

    Based on public areas and contours of touching kernels, an approach to search segmentation points was developed, realizing automatic segmentation of touching corn kernels. For two touching kernels, the public area could be obtained in the process of continuous erosion-dilation. Non-closed curve segment was extracted by getting intersection of the public area and one kernel contour. The endpoints of the curve segment were segmentation points. Then the two touching kernels were separated by linking two segmentation points with Bresenham algorithm. For massive touching kernels, every single kernel could be stripped using the similar method. The experimental results on 100 touching kernels images showed that the correction rate of segmentation is 96%. The kernels after segmentation have small deformation and smooth boundaries.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

荀一,鮑官軍,楊慶華,高峰,李偉.粘連玉米籽粒圖像的自動(dòng)分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(4):163-167. of Touching Corn Kernels in Digital Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(4):163-167.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼