ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于小波和雙譜分析的湍流相干結(jié)構(gòu)辨
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:


of Turbulent Coherent Structures Based on Wavelet and Bi-spectrum Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了從湍流信號(hào)中獲取更多關(guān)于相干結(jié)構(gòu)的定量信息,,提出了一種基于小波和雙譜分析的辨識(shí)相干結(jié)構(gòu)的方法,。該方法通過(guò)雙譜和互相關(guān)分析合理地得到了包含相干結(jié)構(gòu)信息的大渦信號(hào),利用小波變換有效地提取出表征湍流多尺度相干結(jié)構(gòu)的信號(hào)成份,。建立了基于小波分析辨識(shí)湍流含能尺度的能量最大準(zhǔn)則,,以溝槽壁面減阻機(jī)理實(shí)驗(yàn)的湍流數(shù)據(jù)分析為例,驗(yàn)證了該方法的合理性和可靠性,。

    Abstract:

    It is very important to develop a more effective and objective method to get more quantified information of coherent structures from the turbulent signal. Based on wavelet and bi-spectrum analysis, a reasonable method was put forward. The large eddy signal including the information of coherent structures was extracted by the bi-spectrum and cross correlation analysis, and multi-scale coherent structures were detected by the wavelet transform. Besides, by using wavelet analysis, a new identification criterion of energy-containing scale was established. The reliability and rationality of the method was verified by an example with the sample data from the experiment on the mechanism of rib-lets drag reduction. Furthermore, this research has also led to the conclusion that the multi-scale characteristics of coherent structures can be gotten by the above method.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張斌,王彤,谷傳綱,戴正元.基于小波和雙譜分析的湍流相干結(jié)構(gòu)辨[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(11):203-207. of Turbulent Coherent Structures Based on Wavelet and Bi-spectrum Analysis[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(11):203-207.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼